Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109.
Applied Physics Program, University of Michigan, Ann Arbor, MI 48109.
Proc Natl Acad Sci U S A. 2021 May 25;118(21). doi: 10.1073/pnas.2024034118.
The rigid constraints of chemistry-dictated by quantum mechanics and the discrete nature of the atom-limit the set of observable atomic crystal structures. What structures are possible in the absence of these constraints? Here, we systematically crystallize one-component systems of particles interacting with isotropic multiwell pair potentials. We investigate two tunable families of pairwise interaction potentials. Our simulations self-assemble a multitude of crystal structures ranging from basic lattices to complex networks. Sixteen of the structures have natural analogs spanning all coordination numbers found in inorganic chemistry. Fifteen more are hitherto unknown and occupy the space between covalent and metallic coordination environments. The discovered crystal structures constitute targets for self-assembly and expand our understanding of what a crystal structure can look like.
刚性的化学限制——由量子力学和原子的离散性质决定——限制了可观察的原子晶体结构的集合。在没有这些限制的情况下,可能会有什么样的结构呢?在这里,我们系统地结晶了由各向同性多阱对势相互作用的单一成分系统的粒子。我们研究了两种可调谐的对相互作用势家族。我们的模拟自组装出了大量的晶体结构,从基本晶格到复杂网络。其中 16 种结构具有跨越无机化学中所有配位数的天然类似物。还有 15 种结构是以前未知的,它们占据了共价和金属配位环境之间的空间。所发现的晶体结构构成了自组装的目标,并扩展了我们对晶体结构可能是什么样子的理解。