Division of Nano and Biophysics, Department of Physics, Chalmers University of Technology, Gothenburg 41296, Sweden.
Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk 630090, Russia.
Nano Lett. 2021 Jun 9;21(11):4622-4628. doi: 10.1021/acs.nanolett.1c00644. Epub 2021 May 18.
In-depth understanding of the intricate interactions between biomolecules and nanoparticles is hampered by a lack of analytical methods providing quantitative information about binding kinetics. Herein, we demonstrate how label-free evanescent light-scattering microscopy can be used to temporally resolve specific protein binding to individual surface-bound (∼100 nm) lipid vesicles. A theoretical model is proposed that translates protein-induced changes in light-scattering intensity into bound mass. Since the analysis is centered on individual lipid vesicles, the signal from nonspecific protein binding to the surrounding surface is completely avoided, offering a key advantage over conventional surface-based techniques. Further, by averaging the intensities from less than 2000 lipid vesicles, the sensitivity is shown to increase by orders of magnitude. Taken together, these features provide a new avenue in studies of protein-nanoparticle interaction, in general, and specifically in the context of nanoparticles in medical diagnostics and drug delivery.
深入了解生物分子和纳米粒子之间的复杂相互作用受到缺乏提供有关结合动力学定量信息的分析方法的阻碍。在此,我们展示了如何使用无标记的消逝光散射显微镜来实时解析特定蛋白质与单个表面结合(约 100nm)脂质囊泡的结合动力学。提出了一种理论模型,将光散射强度的蛋白质诱导变化转化为结合质量。由于分析集中在单个脂质囊泡上,因此完全避免了周围表面上非特异性蛋白质结合的信号,与传统的基于表面的技术相比具有关键优势。此外,通过对少于 2000 个脂质囊泡的强度进行平均,显示灵敏度提高了几个数量级。总的来说,这些特征为研究蛋白质-纳米粒子相互作用提供了新途径,特别是在医学诊断和药物输送中纳米粒子的背景下。