Suppr超能文献

SARS-CoV-2 包膜蛋白与阿米洛利的相互作用与抗病毒活性相关。

Interactions of SARS-CoV-2 envelope protein with amilorides correlate with antiviral activity.

机构信息

Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America.

Department of Medicine, University of California San Diego, La Jolla, California, United States of America.

出版信息

PLoS Pathog. 2021 May 18;17(5):e1009519. doi: 10.1371/journal.ppat.1009519. eCollection 2021 May.

Abstract

SARS-CoV-2 is the novel coronavirus that is the causative agent of COVID-19, a sometimes-lethal respiratory infection responsible for a world-wide pandemic. The envelope (E) protein, one of four structural proteins encoded in the viral genome, is a 75-residue integral membrane protein whose transmembrane domain exhibits ion channel activity and whose cytoplasmic domain participates in protein-protein interactions. These activities contribute to several aspects of the viral replication-cycle, including virion assembly, budding, release, and pathogenesis. Here, we describe the structure and dynamics of full-length SARS-CoV-2 E protein in hexadecylphosphocholine micelles by NMR spectroscopy. We also characterized its interactions with four putative ion channel inhibitors. The chemical shift index and dipolar wave plots establish that E protein consists of a long transmembrane helix (residues 8-43) and a short cytoplasmic helix (residues 53-60) connected by a complex linker that exhibits some internal mobility. The conformations of the N-terminal transmembrane domain and the C-terminal cytoplasmic domain are unaffected by truncation from the intact protein. The chemical shift perturbations of E protein spectra induced by the addition of the inhibitors demonstrate that the N-terminal region (residues 6-18) is the principal binding site. The binding affinity of the inhibitors to E protein in micelles correlates with their antiviral potency in Vero E6 cells: HMA ≈ EIPA > DMA >> Amiloride, suggesting that bulky hydrophobic groups in the 5' position of the amiloride pyrazine ring play essential roles in binding to E protein and in antiviral activity. An N15A mutation increased the production of virus-like particles, induced significant chemical shift changes from residues in the inhibitor binding site, and abolished HMA binding, suggesting that Asn15 plays a key role in maintaining the protein conformation near the binding site. These studies provide the foundation for complete structure determination of E protein and for structure-based drug discovery targeting this protein.

摘要

SARS-CoV-2 是一种新型冠状病毒,是导致 COVID-19 的病原体,COVID-19 是一种有时致命的呼吸道感染,导致了全球大流行。包膜(E)蛋白是病毒基因组中编码的四种结构蛋白之一,是一种 75 个残基的整合膜蛋白,其跨膜结构域具有离子通道活性,细胞质结构域参与蛋白质-蛋白质相互作用。这些活性有助于病毒复制周期的几个方面,包括病毒粒子组装、出芽、释放和发病机制。在这里,我们通过 NMR 光谱描述了在十六烷基磷酸胆碱胶束中的全长 SARS-CoV-2 E 蛋白的结构和动态。我们还描述了其与四种潜在的离子通道抑制剂的相互作用。化学位移指数和偶极波图表明,E 蛋白由一个长的跨膜螺旋(残基 8-43)和一个短的细胞质螺旋(残基 53-60)组成,由一个具有一定内部流动性的复杂连接子连接。N 端跨膜结构域和 C 端细胞质结构域的构象不受从完整蛋白中截断的影响。抑制剂的加入引起的 E 蛋白谱的化学位移扰动表明,N 端区域(残基 6-18)是主要的结合位点。抑制剂在胶束中与 E 蛋白的结合亲和力与它们在 Vero E6 细胞中的抗病毒效力相关:HMA≈EIPA>DMA>>阿米洛利,表明在阿米洛利吡嗪环的 5'位置上的大的疏水性基团在与 E 蛋白结合和抗病毒活性中起着重要作用。N15A 突变增加了病毒样颗粒的产生,诱导了抑制剂结合位点残基的显著化学位移变化,并消除了 HMA 结合,表明 Asn15 在维持结合位点附近的蛋白质构象中起着关键作用。这些研究为 E 蛋白的完整结构测定和针对该蛋白的基于结构的药物发现奠定了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验