The Division of Cardiovascular Sciences, University of Manchester, United Kingdom.
The Division of Cardiovascular Sciences, University of Manchester, United Kingdom; Department of Anatomy, Jagiellonian University Medical College, Krakow, Poland.
Prog Biophys Mol Biol. 2021 Nov;166:86-104. doi: 10.1016/j.pbiomolbio.2021.04.008. Epub 2021 May 15.
The sinus node (SN) is the heart's primary pacemaker. Key ion channels (mainly the funny channel, HCN4) and Ca-handling proteins in the SN are responsible for its function. Transcription factors (TFs) regulate gene expression through inhibition or activation and microRNAs (miRs) do this through inhibition. There is high expression of macrophages and mast cells within the SN connective tissue. 'Novel'/unexplored TFs and miRs in the regulation of ion channels and immune cells in the SN are not well understood. Using RNAseq and bioinformatics, the expression profile and predicted interaction of key TFs and cell markers with key miRs in the adult human SN vs. right atrial tissue (RA) were determined.
68 and 60 TFs significantly more or less expressed in the SN vs. RA respectively. Among those more expressed were ISL1 and TBX3 (involved in embryonic development of the SN) and 'novel' RUNX1-2, CEBPA, GLI1-2 and SOX2. These TFs were predicted to regulate HCN4 expression in the SN. Markers for different cells: fibroblasts (COL1A1), fat (FABP4), macrophages (CSF1R and CD209), natural killer (GZMA) and mast (TPSAB1) were significantly more expressed in the SN vs. RA. Interestingly, RUNX1-3, CEBPA and GLI1 also regulate expression of these cells. MiR-486-3p inhibits HCN4 and markers involved in immune response.
In conclusion, RUNX1-2, CSF1R, TPSAB1, COL1A1 and HCN4 are highly expressed in the SN but not miR-486-3p. Their complex interactions can be used to treat SN dysfunction such as bradycardia. Interestingly, another research group recently reported miR-486-3p is upregulated in blood samples from severe COVID-19 patients who suffer from bradycardia.
窦房结(SN)是心脏的主要起搏点。SN 中的关键离子通道(主要是有趣的通道,HCN4)和钙处理蛋白负责其功能。转录因子(TFs)通过抑制或激活来调节基因表达,而 microRNAs(miRs)则通过抑制来实现这一点。SN 结缔组织内有大量巨噬细胞和肥大细胞表达。SN 中离子通道和免疫细胞调节的“新型”/未探索的 TFs 和 miRs 尚未得到很好的理解。本研究使用 RNAseq 和生物信息学方法,确定了成人人类 SN 与右心房组织(RA)相比关键 TF 和细胞标志物与关键 miRs 的表达谱和预测相互作用。
与 RA 相比,SN 中分别有 68 和 60 个 TF 显著更多或更少表达。其中表达更多的是 ISL1 和 TBX3(参与 SN 的胚胎发育)和“新型”RUNX1-2、CEBPA、GLI1-2 和 SOX2。这些 TF 被预测可调节 SN 中的 HCN4 表达。不同细胞的标志物:成纤维细胞(COL1A1)、脂肪(FABP4)、巨噬细胞(CSF1R 和 CD209)、自然杀伤(GZMA)和肥大细胞(TPSAB1)在 SN 中表达明显更高。有趣的是,RUNX1-3、CEBPA 和 GLI1 也调节这些细胞的表达。miR-486-3p 抑制 HCN4 和参与免疫反应的标志物。
总之,RUNX1-2、CSF1R、TPSAB1、COL1A1 和 HCN4 在 SN 中高度表达,但 miR-486-3p 不表达。它们的复杂相互作用可用于治疗 SN 功能障碍,如心动过缓。有趣的是,另一个研究小组最近报道,miR-486-3p 在 COVID-19 重症患者的血液样本中上调,这些患者患有心动过缓。