Department of Bionano Engineering and Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea.
ACS Appl Mater Interfaces. 2021 Jun 2;13(21):24385-24400. doi: 10.1021/acsami.1c00676. Epub 2021 May 18.
Self-assembly of thermally responsive polypeptides into unique nanostructures offers intriguing attributes including dynamic physical dimensions, biocompatibility, and biodegradability for the smart bio-nanomaterials. As elastin-based polypeptide (EBP) fusion proteins with lower critical solution temperature (LCST) are studied as drug delivery systems, EBP block copolypeptides with the resilin-based polypeptide (RBP) displaying an upper critical solution temperature (UCST) have been of great interest. In this study, we report thermally triggered, dynamic self-assembly of EBP- and RBP-based diblock copolypeptides into switched nanostructures with reversibility under physiological conditions. Molecular DNA clones encoding for the EBP-RBP diblocks at different block length ratios were biosynthesized via recursive directional ligation and overexpressed, followed by nonchromatographic purification by inverse transition cycling. Genetically engineered diblock copolypeptides composed of the EBP with an LCST and the RBP with a UCST showed converse phase transition behaviors with both a distinct LCST and a distinct UCST (LCST < UCST). As temperature increased, three phases of these EBP-RBP diblocks were observed: (1) self-assembled micelles or vesicles below both LCST and UCST, (2) whole aggregates above LCST and below UCST, and (3) reversed micelles above both LCST and UCST. In conclusion, these stimuli-triggered, dynamic protein-based nanostructures are promising for advanced drug delivery systems, regenerative medicine, and biomedical nanotechnology.
热响应多肽自组装成独特的纳米结构,为智能生物纳米材料提供了诱人的特性,包括动态物理尺寸、生物相容性和可生物降解性。由于具有较低临界溶液温度 (LCST) 的基于弹性蛋白的多肽 (EBP) 融合蛋白被用作药物传递系统,因此具有较高临界溶液温度 (UCST) 的基于 resilin 的多肽 (RBP) 的 EBP 嵌段共多肽引起了极大的兴趣。在这项研究中,我们报告了 EBP 和 RBP 基二嵌段共多肽在生理条件下具有热触发、动态自组装成可切换纳米结构的能力,并且具有可逆性。通过递归定向连接生物合成编码 EBP-RBP 二嵌段的分子 DNA 克隆,并在不同的嵌段长度比下进行过表达,然后通过反向转变循环进行非色谱纯化。由具有 LCST 的 EBP 和具有 UCST 的 RBP 组成的基因工程二嵌段共聚物表现出相反的相转变行为,具有明显的 LCST 和明显的 UCST(LCST < UCST)。随着温度的升高,观察到这些 EBP-RBP 二嵌段的三个相:(1)低于 LCST 和 UCST 的自组装胶束或囊泡,(2)高于 LCST 且低于 UCST 的整体聚集物,和(3)高于 LCST 和 UCST 的反向胶束。总之,这些受刺激触发的、动态的基于蛋白质的纳米结构有望用于先进的药物传递系统、再生医学和生物医学纳米技术。