Xu Yi, Li Fengwang, Xu Aoni, Edwards Jonathan P, Hung Sung-Fu, Gabardo Christine M, O'Brien Colin P, Liu Shijie, Wang Xue, Li Yuhang, Wicks Joshua, Miao Rui Kai, Liu Yuan, Li Jun, Huang Jianan Erick, Abed Jehad, Wang Yuhang, Sargent Edward H, Sinton David
Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada.
Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada.
Nat Commun. 2021 May 18;12(1):2932. doi: 10.1038/s41467-021-23065-4.
The electrochemical conversion of CO to methane provides a means to store intermittent renewable electricity in the form of a carbon-neutral hydrocarbon fuel that benefits from an established global distribution network. The stability and selectivity of reported approaches reside below technoeconomic-related requirements. Membrane electrode assembly-based reactors offer a known path to stability; however, highly alkaline conditions on the cathode favour C-C coupling and multi-carbon products. In computational studies herein, we find that copper in a low coordination number favours methane even under highly alkaline conditions. Experimentally, we develop a carbon nanoparticle moderator strategy that confines a copper-complex catalyst when employed in a membrane electrode assembly. In-situ XAS measurements confirm that increased carbon nanoparticle loadings can reduce the metallic copper coordination number. At a copper coordination number of 4.2 we demonstrate a CO-to-methane selectivity of 62%, a methane partial current density of 136 mA cm, and > 110 hours of stable operation.
将CO电化学转化为甲烷提供了一种以碳中和碳氢化合物燃料的形式存储间歇性可再生电力的方法,这种燃料受益于成熟的全球分销网络。已报道方法的稳定性和选择性低于技术经济相关要求。基于膜电极组件的反应器提供了一条实现稳定性的已知途径;然而,阴极上的高碱性条件有利于C-C偶联和多碳产物。在本文的计算研究中,我们发现即使在高碱性条件下,低配位数的铜也有利于生成甲烷。在实验中,我们开发了一种碳纳米颗粒调节剂策略,当用于膜电极组件时,该策略可限制铜络合物催化剂。原位X射线吸收光谱测量证实,增加碳纳米颗粒负载量可降低金属铜的配位数。在铜配位数为4.2时,我们展示了62%的CO转化为甲烷的选择性、136 mA cm的甲烷分电流密度以及超过110小时的稳定运行。