Suppr超能文献

血小板活化过程的超分辨成像及其定量分析。

Super-resolution imaging of platelet-activation process and its quantitative analysis.

机构信息

Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea.

Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.

出版信息

Sci Rep. 2021 May 18;11(1):10511. doi: 10.1038/s41598-021-89799-9.

Abstract

Understanding the platelet activation molecular pathways by characterizing specific protein clusters within platelets is essential to identify the platelet activation state and improve the existing therapies for hemostatic disorders. Here, we employed various state-of-the-art super-resolution imaging and quantification methods to characterize the platelet spatiotemporal ultrastructural change during the activation process due to phorbol 12-myristate 13-acetate (PMA) stimuli by observing the cytoskeletal elements and various organelles at nanoscale, which cannot be done using conventional microscopy. Platelets could be spread out with the guidance of actin and microtubules, and most organelles were centralized probably due to the limited space of the peripheral thin regions or the close association with the open canalicular system (OCS). Among the centralized organelles, we provided evidence that granules are fused with the OCS to release their cargo through enlarged OCS. These findings highlight the concerted ultrastructural reorganization and relative arrangements of various organelles upon activation and call for a reassessment of previously unresolved complex and multi-factorial activation processes.

摘要

通过对血小板内特定蛋白簇进行特征化,了解血小板激活的分子途径,对于识别血小板激活状态和改善止血障碍的现有治疗方法至关重要。在这里,我们采用了各种最先进的超分辨率成像和定量方法,通过观察纳米尺度的细胞骨架元件和各种细胞器,来描述血小板在佛波醇 12-肉豆蔻酸 13-乙酸酯(PMA)刺激下的激活过程中的时空超微结构变化,这是常规显微镜无法做到的。血小板在肌动蛋白和微管的引导下可以展开,并且大多数细胞器可能由于外周薄区域的有限空间或与开放小管系统(OCS)的紧密关联而集中在一起。在集中的细胞器中,我们提供的证据表明颗粒与 OCS 融合,通过扩大的 OCS 释放其货物。这些发现强调了激活过程中各种细胞器的协同超微结构重排和相对排列,并呼吁重新评估以前未解决的复杂和多因素激活过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9349/8131365/597e0143ac36/41598_2021_89799_Fig1_HTML.jpg

相似文献

1
Super-resolution imaging of platelet-activation process and its quantitative analysis.
Sci Rep. 2021 May 18;11(1):10511. doi: 10.1038/s41598-021-89799-9.
2
Cytoskeletal changes in platelets induced by thrombin and phorbol myristate acetate (PMA).
Cell Biol Int. 1998;22(6):429-35. doi: 10.1006/cbir.1998.0271.
6
8
A role for intracellular histamine in ultrastructural changes induced in platelets by phorbol esters.
Arteriosclerosis. 1989 Sep-Oct;9(5):684-9. doi: 10.1161/01.atv.9.5.684.

引用本文的文献

1
Optimizing canine T cell activation, expansion, and transduction.
PLoS One. 2025 Sep 11;20(9):e0324403. doi: 10.1371/journal.pone.0324403. eCollection 2025.
3
Advancing Platelet Research Through Live-Cell Imaging: Challenges, Techniques, and Insights.
Sensors (Basel). 2025 Jan 16;25(2):491. doi: 10.3390/s25020491.
4
The Well-Forgotten Old: Platelet-Rich Plasma in Modern Anti-Aging Therapy.
Cells. 2024 Oct 23;13(21):1755. doi: 10.3390/cells13211755.
5
Platelet activation near point-like source of agonist: Experimental insights and computational model.
PLoS One. 2024 Oct 3;19(10):e0308679. doi: 10.1371/journal.pone.0308679. eCollection 2024.
8
Autophagy-enabled protein degradation: Key to platelet activation and ANGII production in patients with type 2 diabetes mellitus.
Heliyon. 2024 Aug 10;10(16):e36131. doi: 10.1016/j.heliyon.2024.e36131. eCollection 2024 Aug 30.
9
A nanoscale visual exploration of the pathogenic effects of bacterial extracellular vesicles on host cells.
J Nanobiotechnology. 2024 Sep 6;22(1):548. doi: 10.1186/s12951-024-02817-6.

本文引用的文献

1
Platelet δ-Storage Pool Disease: An Update.
J Clin Med. 2020 Aug 4;9(8):2508. doi: 10.3390/jcm9082508.
3
Platelet-derived extracellular vesicles infiltrate and modify the bone marrow during inflammation.
Blood Adv. 2020 Jul 14;4(13):3011-3023. doi: 10.1182/bloodadvances.2020001758.
4
3D ultrastructural analysis of α-granule, dense granule, mitochondria, and canalicular system arrangement in resting human platelets.
Res Pract Thromb Haemost. 2019 Oct 25;4(1):72-85. doi: 10.1002/rth2.12260. eCollection 2020 Jan.
5
Role of Platelet Mitochondria: Life in a Nucleus-Free Zone.
Front Cardiovasc Med. 2019 Oct 29;6:153. doi: 10.3389/fcvm.2019.00153. eCollection 2019.
6
Tubulin in Platelets: When the Shape Matters.
Int J Mol Sci. 2019 Jul 16;20(14):3484. doi: 10.3390/ijms20143484.
7
Cancer cell-derived immunoglobulin G activates platelets by binding to platelet FcγRIIa.
Cell Death Dis. 2019 Jan 28;10(2):87. doi: 10.1038/s41419-019-1367-x.
8
Microtubule-directed transport of purine metabolons drives their cytosolic transit to mitochondria.
Proc Natl Acad Sci U S A. 2018 Dec 18;115(51):13009-13014. doi: 10.1073/pnas.1814042115. Epub 2018 Dec 3.
9
SNARE-dependent membrane fusion initiates α-granule matrix decondensation in mouse platelets.
Blood Adv. 2018 Nov 13;2(21):2947-2958. doi: 10.1182/bloodadvances.2018019158.
10
Localization Microscopy of Actin Cytoskeleton in Human Platelets.
Int J Mol Sci. 2018 Apr 11;19(4):1150. doi: 10.3390/ijms19041150.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验