Suppr超能文献

无人航空系统发现了被忽视的位点,这些位点捕捉到了玉米整个生长期的变化。

Unoccupied aerial systems discovered overlooked loci capturing the variation of entire growing period in maize.

机构信息

Dept. of Soil and Crop Sciences, Texas A&M Univ., College Station, TX, 77843-2474, USA.

Dept. of Environmental Hort., Institute of Food and Agricultural Sciences, Mid-Florida Research and Education Center, University of Florida, Apopka, FL, USA.

出版信息

Plant Genome. 2021 Jul;14(2):e20102. doi: 10.1002/tpg2.20102. Epub 2021 May 19.

Abstract

Traditional phenotyping methods, coupled with genetic mapping in segregating populations, have identified loci governing complex traits in many crops. Unoccupied aerial systems (UAS)-based phenotyping has helped to reveal a more novel and dynamic relationship between time-specific associated loci with complex traits previously unable to be evaluated. Over 1,500 maize (Zea mays L.) hybrid row plots containing 280 different replicated maize hybrids from the Genomes to Fields (G2F) project were evaluated agronomically and using UAS in 2017. Weekly UAS flights captured variation in plant heights during the growing season under three different management conditions each year: optimal planting with irrigation (G2FI), optimal dryland planting without irrigation (G2FD), and a stressed late planting (G2LA). Plant height of different flights were ranked based on importance for yield using a random forest (RF) algorithm. Plant heights captured by early flights in G2FI trials had higher importance (based on Gini scores) for predicting maize grain yield (GY) but also higher accuracies in genomic predictions which fluctuated for G2FD (-0.06∼0.73), G2FI (0.33∼0.76), and G2LA (0.26∼0.78) trials. A genome-wide association analysis discovered 52 significant single nucleotide polymorphisms (SNPs), seven were found consistently in more than one flights or trial; 45 were flight or trial specific. Total cumulative marker effects for each chromosome's contributions to plant height also changed depending on flight. Using UAS phenotyping, this study showed that many candidate genes putatively play a role in the regulation of plant architecture even in relatively early stages of maize growth and development.

摘要

传统的表型分析方法,加上分离群体中的遗传作图,已经确定了许多作物中控制复杂性状的基因座。基于无人空中系统(UAS)的表型分析有助于揭示以前无法评估的特定时间相关基因座与复杂性状之间更新颖和动态的关系。在 2017 年,对包含来自 Genomes to Fields (G2F) 项目的 280 个不同重复的玉米杂交行的 1500 多个玉米(Zea mays L.)杂交行进行了农艺和 UAS 评估。每周的 UAS 飞行在三个不同管理条件下捕捉生长季节中植物高度的变化:有灌溉的最佳种植(G2FI)、无灌溉的最佳旱地种植(G2FD)和受胁迫的晚期种植(G2LA)。使用随机森林(RF)算法根据产量的重要性对不同飞行的植物高度进行排名。在 G2FI 试验中,早期飞行捕获的植物高度对预测玉米籽粒产量(GY)具有更高的重要性(基于基尼分数),但在 G2FD(-0.06∼0.73)、G2FI(0.33∼0.76)和 G2LA(0.26∼0.78)试验中的基因组预测准确性波动较大。全基因组关联分析发现了 52 个显著的单核苷酸多态性(SNP),其中 7 个在一个以上的飞行或试验中发现;45 个是飞行或试验特有的。每个染色体对植物高度的总累积标记效应也根据飞行而变化。使用 UAS 表型分析,本研究表明,许多候选基因可能在玉米生长和发育的相对早期阶段就对植物结构的调节起作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验