College of Agronomy, Plant Biotechnology Center, Jilin Agricultural University, 130118, Changchun, Jilin, China.
College of Life Sciences, Jilin Agricultural University, Jilin, 130118, Changchun, China.
BMC Genomics. 2021 Jul 20;22(1):558. doi: 10.1186/s12864-021-07874-x.
Breeding for new maize varieties with propitious root systems has tremendous potential in improving water and nutrients use efficiency and plant adaptation under suboptimal conditions. To date, most of the previously detected root-related trait genes in maize were new without functional verification. In this study, seven seedling root architectural traits were examined at three developmental stages in a recombinant inbred line population (RIL) of 179 RILs and a genome-wide association study (GWAS) panel of 80 elite inbred maize lines through quantitative trait loci (QTL) mapping and genome-wide association study.
Using inclusive composite interval mapping, 8 QTLs accounting for 6.44-8.83 % of the phenotypic variation in root traits, were detected on chromosomes 1 (qRDW-1-1 and qRDW/SDW-1-1), 2 (qRBN-2-1), 4 (qSUA-4-1, qSUA-4-1, and qROV-4-1), and 10 (qTRL-10-1, qRBN-10-1). GWAS analysis involved three models (EMMAX, FarmCPU, and MLM) for a set of 1,490,007 high-quality single nucleotide polymorphisms (SNPs) obtained via whole genome next-generation sequencing (NGS). Overall, 53 significant SNPs with a phenotypic contribution rate ranging from 5.10 to 30.2 % and spread all over the ten maize chromosomes exhibited associations with the seven root traits. 17 SNPs were repeatedly detected from at least two growth stages, with several SNPs associated with multiple traits stably identified at all evaluated stages. Within the average linkage disequilibrium (LD) distance of 5.2 kb for the significant SNPs, 46 candidate genes harboring substantial SNPs were identified. Five potential genes viz. Zm00001d038676, Zm00001d015379, Zm00001d018496, Zm00001d050783, and Zm00001d017751 were verified for expression levels using maize accessions with extreme root branching differences from the GWAS panel and the RIL population. The results showed significantly (P < 0.001) different expression levels between the outer materials in both panels and at all considered growth stages.
This study provides a key reference for uncovering the complex genetic mechanism of root development and genetic enhancement of maize root system architecture, thus supporting the breeding of high-yielding maize varieties with propitious root systems.
培育具有良好根系的新型玉米品种,在提高水分和养分利用效率以及在低水平条件下提高植物适应性方面具有巨大潜力。迄今为止,玉米中以前检测到的大多数与根系相关的性状基因都是新的,没有功能验证。本研究通过数量性状位点(QTL)作图和全基因组关联研究(GWAS),在一个由 179 个重组自交系(RIL)组成的群体和一个由 80 个优良自交系组成的 GWAS 面板中,在三个发育阶段检测了七个幼苗根系结构性状,以检测与根系性状相关的 QTL。
利用包容性复合区间作图,在第 1 染色体(qRDW-1-1 和 qRDW/SDW-1-1)、第 2 染色体(qRBN-2-1)、第 4 染色体(qSUA-4-1、qSUA-4-1 和 qROV-4-1)和第 10 染色体(qTRL-10-1、qRBN-10-1)上检测到 8 个 QTL,分别占根系性状表型变异的 6.44%-8.83%。GWAS 分析涉及三种模型(EMMAX、FarmCPU 和 MLM),用于分析通过全基因组下一代测序(NGS)获得的 1490007 个高质量单核苷酸多态性(SNP)。总体而言,与七个根系性状相关的 53 个显著 SNP 的表型贡献率在 5.10%到 30.2%之间,分布在玉米的十个染色体上。17 个 SNP 至少在两个生长阶段被重复检测到,在所有评估阶段,一些与多个性状相关的 SNP 被稳定识别。在显著 SNP 的平均连锁不平衡(LD)距离为 5.2kb 的情况下,鉴定出 46 个含有大量 SNP 的候选基因。使用来自 GWAS 面板和 RIL 群体的具有极端根系分枝差异的玉米材料,对候选基因 Zm00001d038676、Zm00001d015379、Zm00001d018496、Zm00001d050783 和 Zm00001d017751 的表达水平进行了验证,结果表明在两个面板的外层材料之间以及在所有考虑的生长阶段,表达水平存在显著差异(P<0.001)。
本研究为揭示根系发育的复杂遗传机制和玉米根系结构的遗传改良提供了重要参考,为培育具有良好根系的高产玉米品种提供了支持。