Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA.
Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843-2474, USA.
Sci Rep. 2022 May 9;12(1):7571. doi: 10.1038/s41598-022-11591-0.
Current methods in measuring maize (Zea mays L.) southern rust (Puccinia polyspora Underw.) and subsequent crop senescence require expert observation and are resource-intensive and prone to subjectivity. In this study, unoccupied aerial system (UAS) field-based high-throughput phenotyping (HTP) was employed to collect high-resolution aerial imagery of elite maize hybrids planted in the 2020 and 2021 growing seasons, with 13 UAS flights obtained from 2020 and 17 from 2021. In total, 36 vegetation indices (VIs) were extracted from mosaicked aerial images that served as temporal phenomic predictors for southern rust scored in the field and senescence as scored using UAS-acquired mosaic images. Temporal best linear unbiased predictors (TBLUPs) were calculated using a nested model that treated hybrid performance as nested within flights in terms of rust and senescence. All eight machine learning regressions tested (ridge, lasso, elastic net, random forest, support vector machine with radial and linear kernels, partial least squares, and k-nearest neighbors) outperformed a general linear model with both higher prediction accuracies (92-98%) and lower root mean squared error (RMSE) for rust and senescence scores (linear model RMSE ranged from 65.8 to 2396.5 across all traits, machine learning regressions RMSE ranged from 0.3 to 17.0). UAS-acquired VIs enabled the discovery of novel early quantitative phenotypic indicators of maize senescence and southern rust before being detectable by expert annotation and revealed positive correlations between grain filling time and yield (0.22 and 0.44 in 2020 and 2021), with practical implications for precision agricultural practices.
当前测量玉米(Zea mays L.)南方锈病(Puccinia polyspora Underw.)和后续作物衰老的方法需要专家观察,资源密集且容易主观。在这项研究中,使用无人航空系统(UAS)基于田间的高通量表型分析(HTP)收集了 2020 年和 2021 年生长季节种植的精英玉米杂交种的高分辨率航空图像,其中 2020 年获得了 13 次 UAS 飞行,2021 年获得了 17 次。总共从镶嵌航空图像中提取了 36 个植被指数(VI),这些指数作为南方锈病田间评分和使用 UAS 采集的镶嵌图像评分的衰老的时间表型预测因子。使用嵌套模型计算了时间最佳线性无偏预测(TBLUP),该模型将杂种表现作为锈病和衰老方面的嵌套在飞行中的处理。测试的所有八种机器学习回归(岭、套索、弹性网络、随机森林、具有径向和线性核的支持向量机、偏最小二乘和 K-最近邻)都优于具有更高预测精度(锈病和衰老评分的 92-98%)和更低均方根误差(RMSE)的一般线性模型(线性模型 RMSE 在所有性状中从 65.8 到 2396.5 不等,机器学习回归 RMSE 从 0.3 到 17.0 不等)。UAS 采集的 VI 使人们能够发现玉米衰老和南方锈病的新的早期定量表型指标,这些指标在被专家注释检测到之前是无法发现的,并揭示了灌浆时间与产量之间的正相关关系(2020 年和 2021 年分别为 0.22 和 0.44),这对精准农业实践具有实际意义。