Suppr超能文献

用于脑磁共振成像与肿瘤病理学配准的对称约束不规则结构修复

Symmetric-Constrained Irregular Structure Inpainting for Brain MRI Registration with Tumor Pathology.

作者信息

Liu Xiaofeng, Xing Fangxu, Yang Chao, Jay Kuo C-C, El Fakhri Georges, Woo Jonghye

机构信息

Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.

Facebook Artificial Intelligence, Boston, MA, 02142.

出版信息

Brainlesion. 2021;12658:80-91. doi: 10.1007/978-3-030-72084-1_8. Epub 2021 Mar 27.

Abstract

Deformable registration of magnetic resonance images between patients with brain tumors and healthy subjects has been an important tool to specify tumor geometry through location alignment and facilitate pathological analysis. Since tumor region does not match with any ordinary brain tissue, it has been difficult to deformably register a patient's brain to a normal one. Many patient images are associated with irregularly distributed lesions, resulting in further distortion of normal tissue structures and complicating registration's similarity measure. In this work, we follow a multi-step context-aware image inpainting framework to generate synthetic tissue intensities in the tumor region. The coarse image-to-image translation is applied to make a rough inference of the missing parts. Then, a feature-level patch-match refinement module is applied to refine the details by modeling the semantic relevance between patch-wise features. A symmetry constraint reflecting a large degree of anatomical symmetry in the brain is further proposed to achieve better structure understanding. Deformable registration is applied between inpainted patient images and normal brains, and the resulting deformation field is eventually used to deform original patient data for the final alignment. The method was applied to the Multimodal Brain Tumor Segmentation (BraTS) 2018 challenge database and compared against three existing inpainting methods. The proposed method yielded results with increased peak signal-to-noise ratio, structural similarity index, inception score, and reduced L1 error, leading to successful patient-to-normal brain image registration.

摘要

脑肿瘤患者与健康受试者之间磁共振图像的可变形配准,一直是通过位置对齐来确定肿瘤几何形状并促进病理分析的重要工具。由于肿瘤区域与任何普通脑组织都不匹配,因此很难将患者的大脑与正常大脑进行可变形配准。许多患者图像都伴有分布不规则的病变,导致正常组织结构进一步扭曲,使配准的相似性度量变得复杂。在这项工作中,我们遵循多步骤上下文感知图像修复框架,以在肿瘤区域生成合成组织强度。应用粗略的图像到图像转换来对缺失部分进行粗略推断。然后,应用特征级补丁匹配细化模块,通过对逐补丁特征之间的语义相关性进行建模来细化细节。进一步提出了反映大脑中高度解剖对称性的对称约束,以实现更好的结构理解。在修复后的患者图像和正常大脑之间应用可变形配准,最终将得到的变形场用于对原始患者数据进行变形,以实现最终对齐。该方法应用于多模态脑肿瘤分割(BraTS)2018挑战数据库,并与三种现有的图像修复方法进行了比较。所提出的方法产生的结果具有更高的峰值信噪比、结构相似性指数、初始得分,并降低了L1误差,从而成功实现了患者到正常脑图像的配准。

相似文献

1
Symmetric-Constrained Irregular Structure Inpainting for Brain MRI Registration with Tumor Pathology.
Brainlesion. 2021;12658:80-91. doi: 10.1007/978-3-030-72084-1_8. Epub 2021 Mar 27.
2
Brain MR Atlas Construction Using Symmetric Deep Neural Inpainting.
IEEE J Biomed Health Inform. 2022 Jul;26(7):3185-3196. doi: 10.1109/JBHI.2022.3149754. Epub 2022 Jul 1.
3
GAN-based metal artifacts region inpainting in brain MRI imaging with reflective registration.
Med Phys. 2024 Mar;51(3):2066-2080. doi: 10.1002/mp.16724. Epub 2023 Sep 4.
5
Improved Semantic Image Inpainting Method with Deep Convolution Generative Adversarial Networks.
Big Data. 2022 Dec;10(6):506-514. doi: 10.1089/big.2021.0203. Epub 2021 Dec 21.
6
Deformable MR-CBCT prostate registration using biomechanically constrained deep learning networks.
Med Phys. 2021 Jan;48(1):253-263. doi: 10.1002/mp.14584. Epub 2020 Nov 27.
7
sTBI-GAN: An adversarial learning approach for data synthesis on traumatic brain segmentation.
Comput Med Imaging Graph. 2024 Mar;112:102325. doi: 10.1016/j.compmedimag.2024.102325. Epub 2024 Jan 6.
8
Inpainting the metal artifact region in MRI images by using generative adversarial networks with gated convolution.
Med Phys. 2022 Oct;49(10):6424-6438. doi: 10.1002/mp.15931. Epub 2022 Aug 31.
10
Non-Local Means Inpainting of MS Lesions in Longitudinal Image Processing.
Front Neurosci. 2015 Dec 15;9:456. doi: 10.3389/fnins.2015.00456. eCollection 2015.

引用本文的文献

1
ENIGMA's simple seven: Recommendations to enhance the reproducibility of resting-state fMRI in traumatic brain injury.
Neuroimage Clin. 2024;42:103585. doi: 10.1016/j.nicl.2024.103585. Epub 2024 Mar 5.
2
Tagged-MRI Sequence to Audio Synthesis via Self Residual Attention Guided Heterogeneous Translator.
Med Image Comput Comput Assist Interv. 2022 Sep;13436:376-386. doi: 10.1007/978-3-031-16446-0_36. Epub 2022 Sep 17.
3
Inpainting Missing Tissue in Multiplexed Immunofluorescence Imaging.
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12039. doi: 10.1117/12.2611827. Epub 2022 Apr 4.
4
Brain MR Atlas Construction Using Symmetric Deep Neural Inpainting.
IEEE J Biomed Health Inform. 2022 Jul;26(7):3185-3196. doi: 10.1109/JBHI.2022.3149754. Epub 2022 Jul 1.
5
Brain CT registration using hybrid supervised convolutional neural network.
Biomed Eng Online. 2021 Dec 29;20(1):131. doi: 10.1186/s12938-021-00971-8.
6
Nonsedated Magnetic Resonance Imaging for Visualization of the Velopharynx in the Pediatric Population.
Cleft Palate Craniofac J. 2023 Feb;60(2):249-252. doi: 10.1177/10556656211057361. Epub 2021 Nov 17.
7
Generative Self-training for Cross-domain Unsupervised Tagged-to-Cine MRI Synthesis.
Med Image Comput Comput Assist Interv. 2021;12903:138-148. doi: 10.1007/978-3-030-87199-4_13. Epub 2021 Sep 21.
8
Adapting Off-the-Shelf Source Segmenter for Target Medical Image Segmentation.
Med Image Comput Comput Assist Interv. 2021;12902:549-559. doi: 10.1007/978-3-030-87196-3_51. Epub 2021 Sep 21.
9
DUAL-CYCLE CONSTRAINED BIJECTIVE VAE-GAN FOR TAGGED-TO-CINE MAGNETIC RESONANCE IMAGE SYNTHESIS.
Proc IEEE Int Symp Biomed Imaging. 2021 Apr;2021. doi: 10.1109/isbi48211.2021.9433852. Epub 2021 May 25.
10
A UNIFIED CONDITIONAL DISENTANGLEMENT FRAMEWORK FOR MULTIMODAL BRAIN MR IMAGE TRANSLATION.
Proc IEEE Int Symp Biomed Imaging. 2021 Apr;2021. doi: 10.1109/isbi48211.2021.9433897.

本文引用的文献

1
Groupwise registration of MR brain images with tumors.
Phys Med Biol. 2017 Aug 4;62(17):6853-6868. doi: 10.1088/1361-6560/aa7c41.
2
A survey of MRI-based medical image analysis for brain tumor studies.
Phys Med Biol. 2013 Jul 7;58(13):R97-129. doi: 10.1088/0031-9155/58/13/R97. Epub 2013 Jun 6.
3
Deformable medical image registration: a survey.
IEEE Trans Med Imaging. 2013 Jul;32(7):1153-90. doi: 10.1109/TMI.2013.2265603. Epub 2013 May 31.
4
Deformable registration of glioma images using EM algorithm and diffusion reaction modeling.
IEEE Trans Med Imaging. 2011 Feb;30(2):375-90. doi: 10.1109/TMI.2010.2078833. Epub 2010 Sep 27.
5
A reproducible evaluation of ANTs similarity metric performance in brain image registration.
Neuroimage. 2011 Feb 1;54(3):2033-44. doi: 10.1016/j.neuroimage.2010.09.025. Epub 2010 Sep 17.
6
ORBIT: a multiresolution framework for deformable registration of brain tumor images.
IEEE Trans Med Imaging. 2008 Aug;27(8):1003-17. doi: 10.1109/TMI.2008.916954.
7
Filling-in by joint interpolation of vector fields and gray levels.
IEEE Trans Image Process. 2001;10(8):1200-11. doi: 10.1109/83.935036.
9
Deformable registration of brain tumor images via a statistical model of tumor-induced deformation.
Med Image Anal. 2006 Oct;10(5):752-63. doi: 10.1016/j.media.2006.06.005. Epub 2006 Jul 24.
10
Region filling and object removal by exemplar-based image inpainting.
IEEE Trans Image Process. 2004 Sep;13(9):1200-12. doi: 10.1109/tip.2004.833105.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验