Suppr超能文献

用于跨域无监督标记到电影MRI合成的生成式自训练

Generative Self-training for Cross-domain Unsupervised Tagged-to-Cine MRI Synthesis.

作者信息

Liu Xiaofeng, Xing Fangxu, Stone Maureen, Zhuo Jiachen, Reese Timothy, Prince Jerry L, Fakhri Georges El, Woo Jonghye

机构信息

Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.

Dept. of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA.

出版信息

Med Image Comput Comput Assist Interv. 2021;12903:138-148. doi: 10.1007/978-3-030-87199-4_13. Epub 2021 Sep 21.

Abstract

Self-training based unsupervised domain adaptation (UDA) has shown great potential to address the problem of domain shift, when applying a trained deep learning model in a source domain to unlabeled target domains. However, while the self-training UDA has demonstrated its effectiveness on discriminative tasks, such as classification and segmentation, via the reliable pseudo-label selection based on the softmax discrete histogram, the self-training UDA for generative tasks, such as image synthesis, is not fully investigated. In this work, we propose a novel generative self-training (GST) UDA framework with continuous value prediction and regression objective for cross-domain image synthesis. Specifically, we propose to filter the pseudo-label with an uncertainty mask, and quantify the predictive confidence of generated images with practical variational Bayes learning. The fast test-time adaptation is achieved by a round-based alternative optimization scheme. We validated our framework on the tagged-to-cine magnetic resonance imaging (MRI) synthesis problem, where datasets in the source and target domains were acquired from different scanners or centers. Extensive validations were carried out to verify our framework against popular adversarial training UDA methods. Results show that our GST, with tagged MRI of test subjects in new target domains, improved the synthesis quality by a large margin, compared with the adversarial training UDA methods.

摘要

基于自训练的无监督域适应(UDA)在将源域中训练好的深度学习模型应用于未标记的目标域时,已显示出解决域转移问题的巨大潜力。然而,虽然自训练UDA通过基于softmax离散直方图的可靠伪标签选择,在诸如分类和分割等判别任务上证明了其有效性,但用于诸如图像合成等生成任务的自训练UDA尚未得到充分研究。在这项工作中,我们提出了一种新颖的生成式自训练(GST)UDA框架,用于跨域图像合成,具有连续值预测和回归目标。具体而言,我们建议用不确定性掩码过滤伪标签,并通过实用变分贝叶斯学习量化生成图像的预测置信度。通过基于轮次的交替优化方案实现快速测试时适应。我们在标记到电影磁共振成像(MRI)合成问题上验证了我们的框架,其中源域和目标域中的数据集是从不同的扫描仪或中心获取的。进行了广泛的验证,以将我们的框架与流行的对抗训练UDA方法进行对比。结果表明,与对抗训练UDA方法相比,我们的GST在新目标域中使用测试对象的标记MRI,大大提高了合成质量。

相似文献

1
Generative Self-training for Cross-domain Unsupervised Tagged-to-Cine MRI Synthesis.用于跨域无监督标记到电影MRI合成的生成式自训练
Med Image Comput Comput Assist Interv. 2021;12903:138-148. doi: 10.1007/978-3-030-87199-4_13. Epub 2021 Sep 21.

引用本文的文献

1
Tagged-to-Cine MRI Sequence Synthesis via Light Spatial-Temporal Transformer.通过轻量级时空变换器实现标记到电影MRI序列合成
Med Image Comput Comput Assist Interv. 2024 Oct;15007:701-711. doi: 10.1007/978-3-031-72104-5_67. Epub 2024 Oct 3.
4
Transforming Complex Problems Into K-Means Solutions.将复杂问题转化为 K-Means 解决方案。
IEEE Trans Pattern Anal Mach Intell. 2023 Jul;45(7):9149-9168. doi: 10.1109/TPAMI.2023.3237667. Epub 2023 Jun 5.
6
ACT: Semi-supervised Domain-adaptive Medical Image Segmentation with Asymmetric Co-Training.ACT:基于不对称协同训练的半监督域自适应医学图像分割
Med Image Comput Comput Assist Interv. 2022 Sep;13435:66-76. doi: 10.1007/978-3-031-16443-9_7. Epub 2022 Sep 16.
10
SELF-SEMANTIC CONTOUR ADAPTATION FOR CROSS MODALITY BRAIN TUMOR SEGMENTATION.用于跨模态脑肿瘤分割的自语义轮廓自适应
Proc IEEE Int Symp Biomed Imaging. 2022 Mar;2022. doi: 10.1109/isbi52829.2022.9761629. Epub 2022 Apr 26.

本文引用的文献

1
Adapting Off-the-Shelf Source Segmenter for Target Medical Image Segmentation.将现成的源分割器应用于目标医学图像分割
Med Image Comput Comput Assist Interv. 2021;12902:549-559. doi: 10.1007/978-3-030-87196-3_51. Epub 2021 Sep 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验