Suppr超能文献

基于 EM 算法和扩散反应模型的脑肿瘤图像的可变形配准。

Deformable registration of glioma images using EM algorithm and diffusion reaction modeling.

机构信息

Section of Biomedical Image Analysis, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

IEEE Trans Med Imaging. 2011 Feb;30(2):375-90. doi: 10.1109/TMI.2010.2078833. Epub 2010 Sep 27.

Abstract

This paper investigates the problem of atlas registration of brain images with gliomas. Multiparametric imaging modalities (T1, T1-CE, T2, and FLAIR) are first utilized for segmentations of different tissues, and to compute the posterior probability map (PBM) of membership to each tissue class, using supervised learning. Similar maps are generated in the initially normal atlas, by modeling the tumor growth, using reaction-diffusion equation. Deformable registration using a demons-like algorithm is used to register the patient images with the tumor bearing atlas. Joint estimation of the simulated tumor parameters (e.g., location, mass effect and degree of infiltration), and the spatial transformation is achieved by maximization of the log-likelihood of observation. An expectation-maximization algorithm is used in registration process to estimate the spatial transformation and other parameters related to tumor simulation are optimized through asynchronous parallel pattern search (APPSPACK). The proposed method has been evaluated on five simulated data sets created by statistically simulated deformations (SSD), and fifteen real multichannel glioma data sets. The performance has been evaluated both quantitatively and qualitatively, and the results have been compared to ORBIT, an alternative method solving a similar problem. The results show that our method outperforms ORBIT, and the warped templates have better similarity to patient images.

摘要

本文研究了脑图像与脑肿瘤配准的图谱问题。首先利用多参数成像方式(T1、T1-CE、T2 和 FLAIR)对不同组织进行分割,并利用监督学习计算每个组织类别的成员后验概率图(PBM)。在最初的正常图谱中,通过使用反应-扩散方程对肿瘤生长进行建模,生成相似的图谱。使用类似于 demons 的变形算法进行变形配准,将患者图像与携带肿瘤的图谱进行配准。通过最大化观测的对数似然来实现对模拟肿瘤参数(例如位置、质量效应和浸润程度)和空间变换的联合估计。在注册过程中使用期望最大化算法来估计空间变换,并且通过异步并行模式搜索(APPSPACK)优化与肿瘤模拟相关的其他参数。已经在五个通过统计模拟变形(SSD)创建的模拟数据集和十五个真实的多通道脑肿瘤数据集上评估了该方法。通过定量和定性的方式评估了性能,并将结果与解决类似问题的替代方法 ORBIT 进行了比较。结果表明,我们的方法优于 ORBIT,并且变形后的模板与患者图像的相似度更高。

相似文献

3
GLISTR: glioma image segmentation and registration.GLISTR:脑胶质瘤图像分割与配准。
IEEE Trans Med Imaging. 2012 Oct;31(10):1941-54. doi: 10.1109/TMI.2012.2210558. Epub 2012 Aug 13.

引用本文的文献

1
Brain MR Atlas Construction Using Symmetric Deep Neural Inpainting.基于对称深度神经网络修复的脑磁共振图谱构建
IEEE J Biomed Health Inform. 2022 Jul;26(7):3185-3196. doi: 10.1109/JBHI.2022.3149754. Epub 2022 Jul 1.
6
Deep Learning-Based Concurrent Brain Registration and Tumor Segmentation.基于深度学习的同步脑图谱配准与肿瘤分割
Front Comput Neurosci. 2020 Mar 20;14:17. doi: 10.3389/fncom.2020.00017. eCollection 2020.
10
Multi-Atlas Segmentation of MR Tumor Brain Images Using Low-Rank Based Image Recovery.基于低秩的 MR 肿瘤脑图像多图谱分割。
IEEE Trans Med Imaging. 2018 Oct;37(10):2224-2235. doi: 10.1109/TMI.2018.2824243. Epub 2018 Apr 6.

本文引用的文献

3
Combined volumetric and surface registration.体积与表面联合配准。
IEEE Trans Med Imaging. 2009 Apr;28(4):508-22. doi: 10.1109/TMI.2008.2004426. Epub 2008 Aug 15.
4
Diffeomorphic demons: efficient non-parametric image registration.微分同胚恶魔算法:高效的非参数图像配准
Neuroimage. 2009 Mar;45(1 Suppl):S61-72. doi: 10.1016/j.neuroimage.2008.10.040. Epub 2008 Nov 7.
10
Mechanisms of tumor-related brain edema.肿瘤相关性脑水肿的机制。
Neurosurg Focus. 2007 May 15;22(5):E8. doi: 10.3171/foc.2007.22.5.9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验