Section of Biomedical Image Analysis, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
IEEE Trans Med Imaging. 2011 Feb;30(2):375-90. doi: 10.1109/TMI.2010.2078833. Epub 2010 Sep 27.
This paper investigates the problem of atlas registration of brain images with gliomas. Multiparametric imaging modalities (T1, T1-CE, T2, and FLAIR) are first utilized for segmentations of different tissues, and to compute the posterior probability map (PBM) of membership to each tissue class, using supervised learning. Similar maps are generated in the initially normal atlas, by modeling the tumor growth, using reaction-diffusion equation. Deformable registration using a demons-like algorithm is used to register the patient images with the tumor bearing atlas. Joint estimation of the simulated tumor parameters (e.g., location, mass effect and degree of infiltration), and the spatial transformation is achieved by maximization of the log-likelihood of observation. An expectation-maximization algorithm is used in registration process to estimate the spatial transformation and other parameters related to tumor simulation are optimized through asynchronous parallel pattern search (APPSPACK). The proposed method has been evaluated on five simulated data sets created by statistically simulated deformations (SSD), and fifteen real multichannel glioma data sets. The performance has been evaluated both quantitatively and qualitatively, and the results have been compared to ORBIT, an alternative method solving a similar problem. The results show that our method outperforms ORBIT, and the warped templates have better similarity to patient images.
本文研究了脑图像与脑肿瘤配准的图谱问题。首先利用多参数成像方式(T1、T1-CE、T2 和 FLAIR)对不同组织进行分割,并利用监督学习计算每个组织类别的成员后验概率图(PBM)。在最初的正常图谱中,通过使用反应-扩散方程对肿瘤生长进行建模,生成相似的图谱。使用类似于 demons 的变形算法进行变形配准,将患者图像与携带肿瘤的图谱进行配准。通过最大化观测的对数似然来实现对模拟肿瘤参数(例如位置、质量效应和浸润程度)和空间变换的联合估计。在注册过程中使用期望最大化算法来估计空间变换,并且通过异步并行模式搜索(APPSPACK)优化与肿瘤模拟相关的其他参数。已经在五个通过统计模拟变形(SSD)创建的模拟数据集和十五个真实的多通道脑肿瘤数据集上评估了该方法。通过定量和定性的方式评估了性能,并将结果与解决类似问题的替代方法 ORBIT 进行了比较。结果表明,我们的方法优于 ORBIT,并且变形后的模板与患者图像的相似度更高。