Suppr超能文献

多面性胶质母细胞瘤:从基因组改变到代谢适应。

The Multifaceted Glioblastoma: From Genomic Alterations to Metabolic Adaptations.

机构信息

Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

出版信息

Adv Exp Med Biol. 2021;1311:59-76. doi: 10.1007/978-3-030-65768-0_4.

Abstract

Glioblastoma multiforme (GBM) develops on glial cells and is the most common as well as the deadliest form of brain cancer. As in other cancers, distinct combinations of genetic alterations in GBM subtypes induce a diversity of metabolic phenotypes, which explains the variability of GBM sensitivity to current therapies targeting its reprogrammed metabolism. Therefore, it is becoming imperative for cancer researchers to account for the temporal and spatial heterogeneity within this cancer type before making generalized conclusions about a particular treatment's efficacy. Standard therapies for GBM have shown little success as the disease is almost always lethal; however, researchers are making progress and learning how to combine therapeutic strategies most effectively. GBMs can be classified initially into two subsets consisting of primary and secondary GBMs, and this categorization stems from cancer development. GBM is the highest grade of gliomas, which includes glioma I (low proliferative potential), glioma II (low proliferative potential with some capacity for infiltration and recurrence), glioma III (evidence of malignancy), and glioma IV (GBM) (malignant with features of necrosis and microvascular proliferation). Secondary GBM develops from a low-grade glioma to an advanced-stage cancer, while primary GBM provides no signs of progression and is identified as an advanced-stage glioma from the onset. The differences in prognosis and histology correlated with each classification are generally negligible, but the demographics of individuals affected and the accompanying genetic/metabolic properties show distinct differentiation [3].

摘要

多形性胶质母细胞瘤(GBM)起源于神经胶质细胞,是最常见也是最致命的脑癌类型。与其他癌症一样,GBM 亚型中不同的基因突变组合会诱导出多种代谢表型,这也解释了 GBM 对当前针对其重编程代谢的治疗方法的敏感性存在差异。因此,癌症研究人员在对特定治疗方法的疗效做出一般性结论之前,必须考虑到这种癌症类型的时间和空间异质性。由于这种疾病几乎总是致命的,因此 GBM 的标准治疗方法收效甚微;然而,研究人员正在取得进展,并学习如何最有效地结合治疗策略。GBM 最初可以分为两个子集,包括原发性和继发性 GBM,这种分类源于癌症的发展。GBM 是神经胶质瘤的最高级别,包括神经胶质瘤 I(低增殖潜能)、神经胶质瘤 II(低增殖潜能,具有一定的浸润和复发能力)、神经胶质瘤 III(恶性证据)和神经胶质瘤 IV(GBM)(恶性,具有坏死和微血管增殖特征)。继发性 GBM 由低级别胶质瘤发展为晚期癌症,而原发性 GBM 没有进展的迹象,从一开始就被确定为晚期胶质瘤。与每种分类相关的预后和组织学差异通常可以忽略不计,但受影响个体的人口统计学特征和伴随的遗传/代谢特征显示出明显的分化[3]。

相似文献

1
The Multifaceted Glioblastoma: From Genomic Alterations to Metabolic Adaptations.
Adv Exp Med Biol. 2021;1311:59-76. doi: 10.1007/978-3-030-65768-0_4.
2
The Multifaceted Metabolism of Glioblastoma.
Adv Exp Med Biol. 2018;1063:59-72. doi: 10.1007/978-3-319-77736-8_4.
3
Glioblastoma: pathology, molecular mechanisms and markers.
Acta Neuropathol. 2015 Jun;129(6):829-48. doi: 10.1007/s00401-015-1432-1. Epub 2015 May 6.
4
Isocitrate dehydrogenase status and molecular subclasses of glioma and glioblastoma.
Neurosurg Focus. 2014 Dec;37(6):E13. doi: 10.3171/2014.9.FOCUS14505.
5
Evidence for sequenced molecular evolution of IDH1 mutant glioblastoma from a distinct cell of origin.
J Clin Oncol. 2011 Dec 1;29(34):4482-90. doi: 10.1200/JCO.2010.33.8715. Epub 2011 Oct 24.
7
Molecular biology of glioma.
Adv Exp Med Biol. 2012;746:2-11. doi: 10.1007/978-1-4614-3146-6_1.
8
Metabolic therapy: a new paradigm for managing malignant brain cancer.
Cancer Lett. 2015 Jan 28;356(2 Pt A):289-300. doi: 10.1016/j.canlet.2014.07.015. Epub 2014 Jul 25.
9
An integrative characterization of recurrent molecular aberrations in glioblastoma genomes.
Nucleic Acids Res. 2013 Oct;41(19):8803-21. doi: 10.1093/nar/gkt656. Epub 2013 Jul 31.

引用本文的文献

1
2
Mitochondrial transcription elongation factor TEFM promotes malignant progression of gliomas.
Cancer Cell Int. 2024 Dec 24;24(1):429. doi: 10.1186/s12935-024-03617-6.
3
Disruption of bioenergetics enhances the radio-sensitivity of patient-derived glioblastoma tumorspheres.
Transl Oncol. 2025 Jan;51:102197. doi: 10.1016/j.tranon.2024.102197. Epub 2024 Nov 16.
4
Engineering Nanomedicine for Non-Viral RNA-Based Gene Therapy of Glioblastoma.
Pharmaceutics. 2024 Apr 1;16(4):482. doi: 10.3390/pharmaceutics16040482.
7
The dark side of mRNA translation and the translation machinery in glioblastoma.
Front Cell Dev Biol. 2023 Mar 13;11:1086964. doi: 10.3389/fcell.2023.1086964. eCollection 2023.
8
Rethinking glutamine metabolism and the regulation of glutamine addiction by oncogenes in cancer.
Front Oncol. 2023 Mar 7;13:1143798. doi: 10.3389/fonc.2023.1143798. eCollection 2023.

本文引用的文献

1
The Intratumoral Heterogeneity of Cancer Metabolism.
Adv Exp Med Biol. 2021;1311:149-160. doi: 10.1007/978-3-030-65768-0_11.
2
Different Tumor Microenvironments Lead to Different Metabolic Phenotypes.
Adv Exp Med Biol. 2021;1311:137-147. doi: 10.1007/978-3-030-65768-0_10.
3
The Heterogeneity of Lipid Metabolism in Cancer.
Adv Exp Med Biol. 2021;1311:39-56. doi: 10.1007/978-3-030-65768-0_3.
4
Glutamine Metabolism in Cancer.
Adv Exp Med Biol. 2021;1311:17-38. doi: 10.1007/978-3-030-65768-0_2.
5
Glucose Metabolism in Cancer: The Warburg Effect and Beyond.
Adv Exp Med Biol. 2021;1311:3-15. doi: 10.1007/978-3-030-65768-0_1.
6
Metabolic heterogeneity and adaptability in brain tumors.
Cell Mol Life Sci. 2020 Dec;77(24):5101-5119. doi: 10.1007/s00018-020-03569-w. Epub 2020 Jun 6.
7
Advances in the Knowledge of the Molecular Biology of Glioblastoma and Its Impact in Patient Diagnosis, Stratification, and Treatment.
Adv Sci (Weinh). 2020 Mar 12;7(9):1902971. doi: 10.1002/advs.201902971. eCollection 2020 May.
8
Cerebrospinal fluid tumor DNA for liquid biopsy in glioma patients' management: Close to the clinic?
Crit Rev Oncol Hematol. 2020 Feb;146:102879. doi: 10.1016/j.critrevonc.2020.102879. Epub 2020 Jan 24.
9
Application of metabolomics technologies toward cancer prognosis and therapy.
Int Rev Cell Mol Biol. 2019;347:191-223. doi: 10.1016/bs.ircmb.2019.07.003. Epub 2019 Aug 7.
10
Uncovering the Role of N-Acetyl-Aspartyl-Glutamate as a Glutamate Reservoir in Cancer.
Cell Rep. 2019 Apr 9;27(2):491-501.e6. doi: 10.1016/j.celrep.2019.03.036.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验