Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
Nano Lett. 2024 Jul 31;24(30):9202-9211. doi: 10.1021/acs.nanolett.4c01469. Epub 2024 Jul 22.
The formation of a protein corona gives nanomedicines a distinct biological identity, profoundly influencing their fate in the body. Nonspecific nanoparticle-protein interactions are typically highly heterogeneous, which can lead to unique biological behaviors and fates for individual nanoparticles that remain underexplored. To address this, we have established an approach that allows quantitative examination of nanoparticle-protein adsorption at the individual nanoparticle level. This method integrates dual fluorescence quantification techniques, wherein the nanoparticles are first individually analyzed via nanoflow cytometry to detect fluorescent signals from adsorbed proteins. The obtained fluorescence intensity is then translated into protein quantities through calibration with microplate reader quantification. Consequently, this approach enables analysis of interparticle heterogeneity of nano-protein interactions, as well as monitoring of protein adsorption kinetics and nanoparticle aggregation status in blood serum, preconditioning for a comprehensive understanding of nano-bio interactions, and predicting fate of nanomedicines.
蛋白质冠的形成赋予了纳米药物独特的生物学特性,深刻影响了它们在体内的命运。非特异性纳米颗粒-蛋白质相互作用通常具有高度的异质性,这可能导致单个纳米颗粒表现出独特的生物学行为和命运,但这些方面仍未得到充分探索。为了解决这个问题,我们建立了一种方法,可以在单个纳米颗粒水平上定量研究纳米颗粒-蛋白质的吸附。该方法整合了双荧光定量技术,首先通过纳米流式细胞术对纳米颗粒进行单独分析,以检测吸附蛋白质的荧光信号。然后通过与微孔板阅读器定量相结合,将获得的荧光强度转化为蛋白质的量。因此,该方法可以分析纳米-蛋白质相互作用的颗粒间异质性,以及监测血清中蛋白质吸附动力学和纳米颗粒聚集状态,为全面了解纳米-生物相互作用和预测纳米药物的命运奠定了基础。