Suppr超能文献

机械力感受 Piezo 介导的胃拉伸和神经调节素介导的葡萄糖负荷产生的外周信号调节果蝇大脑营养传感器。

Periphery signals generated by Piezo-mediated stomach stretch and Neuromedin-mediated glucose load regulate the Drosophila brain nutrient sensor.

机构信息

Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York, NY 10016, USA; Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA.

Harvard Medical School, Howard Hughes Medical Institute, Department of Cell Biology, Boston, MA 02115, USA.

出版信息

Neuron. 2021 Jun 16;109(12):1979-1995.e6. doi: 10.1016/j.neuron.2021.04.028. Epub 2021 May 19.

Abstract

Nutrient sensors allow animals to identify foods rich in specific nutrients. The Drosophila nutrient sensor, diuretic hormone 44 (DH44) neurons, helps the fly to detect nutritive sugar. This sensor becomes operational during starvation; however, the mechanisms by which DH44 neurons or other nutrient sensors are regulated remain unclear. Here, we identified two satiety signals that inhibit DH44 neurons: (1) Piezo-mediated stomach/crop stretch after food ingestion and (2) Neuromedin/Hugin neurosecretory neurons in the ventral nerve cord (VNC) activated by an increase in the internal glucose level. A subset of Piezo neurons that express DH44 neuropeptide project to the crop. We found that DH44 neuronal activity and food intake were stimulated following a knockdown of piezo in DH44 neurons or silencing of Hugin neurons in the VNC, even in fed flies. Together, we propose that these two qualitatively distinct peripheral signals work in concert to regulate the DH44 nutrient sensor during the fed state.

摘要

营养传感器使动物能够识别富含特定营养物质的食物。果蝇营养传感器,利尿激素 44(DH44)神经元,帮助果蝇检测营养糖。这种传感器在饥饿时开始运作;然而,DH44 神经元或其他营养传感器的调节机制仍不清楚。在这里,我们确定了两种抑制 DH44 神经元的饱腹感信号:(1)食物摄入后 Piezo 介导的胃/作物伸展,(2)内部葡萄糖水平升高激活的腹神经索(VNC)中的神经肽素/Hugin 神经分泌神经元。表达 DH44 神经肽的 Piezo 神经元亚群投射到作物。我们发现,即使在喂食的果蝇中,DH44 神经元的活性和食物摄入也会在 DH44 神经元中敲低 piezo 或 VNC 中沉默 Hugin 神经元后得到刺激。总的来说,我们提出这两种性质截然不同的外周信号协同作用,在进食状态下调节 DH44 营养传感器。

相似文献

4
Starvation-induced sleep suppression requires the brain nutrient sensor.饥饿诱导的睡眠抑制需要大脑营养传感器。
J Neurogenet. 2023 Mar-Dec;37(1-2):70-77. doi: 10.1080/01677063.2023.2203489. Epub 2023 Jun 2.
8
A Peptidergic Circuit Links the Circadian Clock to Locomotor Activity.肽能电路将生物钟与运动活动联系起来。
Curr Biol. 2017 Jul 10;27(13):1915-1927.e5. doi: 10.1016/j.cub.2017.05.089. Epub 2017 Jun 29.

引用本文的文献

4
Comparative Perspectives on Neuropeptide Function and Social Isolation.神经肽功能与社会隔离的比较视角
Biol Psychiatry. 2025 May 15;97(10):942-952. doi: 10.1016/j.biopsych.2025.01.019. Epub 2025 Jan 30.
6
A brief history of insect neuropeptide and peptide hormone research.昆虫神经肽和肽类激素研究简史
Cell Tissue Res. 2025 Feb;399(2):129-159. doi: 10.1007/s00441-024-03936-0. Epub 2024 Dec 10.
9
Synaptic connectome of a neurosecretory network in the brain.大脑中神经分泌网络的突触连接组
bioRxiv. 2024 Aug 29:2024.08.28.609616. doi: 10.1101/2024.08.28.609616.

本文引用的文献

7
Neural Sensing of Organ Volume.器官容积的神经感知。
Trends Neurosci. 2018 Dec;41(12):911-924. doi: 10.1016/j.tins.2018.07.008. Epub 2018 Aug 22.
9
A Peptidergic Circuit Links the Circadian Clock to Locomotor Activity.肽能电路将生物钟与运动活动联系起来。
Curr Biol. 2017 Jul 10;27(13):1915-1927.e5. doi: 10.1016/j.cub.2017.05.089. Epub 2017 Jun 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验