Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA; Tri-Institutional PhD program in Chemical Biology, The Rockefeller University, New York, NY 10065, USA.
Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA.
Cell Chem Biol. 2021 Oct 21;28(10):1460-1473.e15. doi: 10.1016/j.chembiol.2021.04.024. Epub 2021 May 19.
Cytoplasmic dyneins are AAA (ATPase associated with diverse cellular activities) motor proteins responsible for microtubule minus-end-directed intracellular transport. Dynein's unusually large size, four distinct nucleotide-binding sites, and conformational dynamics pose challenges for the design of potent and selective chemical inhibitors. Here we use structural approaches to develop a model for the inhibition of a well-characterized S. cerevisiae dynein construct by pyrazolo-pyrimidinone-based compounds. These data, along with functional assays of dynein motility and mutagenesis studies, suggest that the compounds inhibit dynein by engaging the regulatory ATPase sites in the AAA3 and AAA4 domains, and not by interacting with dynein's main catalytic site in the AAA1 domain. A double Walker B mutation of the AAA3 and AAA4 sites substantially reduces enzyme activity, suggesting that targeting these regulatory domains is sufficient to inhibit dynein. Our findings reveal how chemical inhibitors can be designed to disrupt allosteric communication across dynein's AAA domains.
细胞质动力蛋白是负责微管负向细胞内运输的 AAA(与多种细胞活动相关的 ATP 酶)马达蛋白。动力蛋白异常大的尺寸、四个独特的核苷酸结合位点和构象动力学对有效和选择性化学抑制剂的设计提出了挑战。在这里,我们使用结构方法来建立基于吡唑并嘧啶酮的化合物抑制经过充分表征的酿酒酵母动力蛋白结构的模型。这些数据,以及对动力蛋白运动的功能测定和突变研究表明,这些化合物通过与 AAA3 和 AAA4 结构域中的调节 ATP 酶结合来抑制动力蛋白,而不是通过与 AAA1 结构域中的动力蛋白主要催化位点相互作用。AAA3 和 AAA4 位点的双 Walker B 突变大大降低了酶活性,这表明靶向这些调节结构域足以抑制动力蛋白。我们的发现揭示了如何设计化学抑制剂来破坏动力蛋白的 AAA 结构域之间的变构通讯。