Suppr超能文献

弥漫性大 B 细胞淋巴瘤形态学:使用深度学习对标注的数字弥漫性大 B 细胞淋巴瘤图像集计算的形态学特征。

DLBCL-Morph: Morphological features computed using deep learning for an annotated digital DLBCL image set.

机构信息

Department of Computer Science, Stanford University, Stanford, United States.

Department of Pathology, Stanford University School of Medicine, Stanford, United States.

出版信息

Sci Data. 2021 May 20;8(1):135. doi: 10.1038/s41597-021-00915-w.

Abstract

Diffuse Large B-Cell Lymphoma (DLBCL) is the most common non-Hodgkin lymphoma. Though histologically DLBCL shows varying morphologies, no morphologic features have been consistently demonstrated to correlate with prognosis. We present a morphologic analysis of histology sections from 209 DLBCL cases with associated clinical and cytogenetic data. Duplicate tissue core sections were arranged in tissue microarrays (TMAs), and replicate sections were stained with H&E and immunohistochemical stains for CD10, BCL6, MUM1, BCL2, and MYC. The TMAs are accompanied by pathologist-annotated regions-of-interest (ROIs) that identify areas of tissue representative of DLBCL. We used a deep learning model to segment all tumor nuclei in the ROIs, and computed several geometric features for each segmented nucleus. We fit a Cox proportional hazards model to demonstrate the utility of these geometric features in predicting survival outcome, and found that it achieved a C-index (95% CI) of 0.635 (0.574,0.691). Our finding suggests that geometric features computed from tumor nuclei are of prognostic importance, and should be validated in prospective studies.

摘要

弥漫性大 B 细胞淋巴瘤(DLBCL)是最常见的非霍奇金淋巴瘤。虽然组织学上 DLBCL 表现出不同的形态学特征,但没有形态学特征被一致证明与预后相关。我们对 209 例伴有临床和细胞遗传学数据的 DLBCL 病例的组织学切片进行了形态学分析。重复的组织芯切片被排列在组织微阵列(TMA)中,并用 H&E 和免疫组织化学染色 CD10、BCL6、MUM1、BCL2 和 MYC 对其进行染色。TMA 附有病理学家注释的感兴趣区域(ROI),这些 ROI 标识了组织中具有代表性的 DLBCL 区域。我们使用深度学习模型对 ROI 中的所有肿瘤核进行分割,并计算了每个分割核的几个几何特征。我们拟合了 Cox 比例风险模型,以证明这些几何特征在预测生存结果中的效用,发现它的 C 指数(95%置信区间)为 0.635(0.574,0.691)。我们的发现表明,从肿瘤核计算出的几何特征具有预后意义,应该在前瞻性研究中进行验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a5/8137959/aff9ef23463f/41597_2021_915_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验