IEEE Trans Neural Syst Rehabil Eng. 2021;29:1035-1046. doi: 10.1109/TNSRE.2021.3082551. Epub 2021 Jun 10.
We provide an open access dataset of High densitY Surface Electromyogram (HD-sEMG) Recordings (named "Hyser"), a toolbox for neural interface research, and benchmark results for pattern recognition and EMG-force applications. Data from 20 subjects were acquired twice per subject on different days following the same experimental paradigm. We acquired 256-channel HD-sEMG from forearm muscles during dexterous finger manipulations. This Hyser dataset contains five sub-datasets as: (1) pattern recognition (PR) dataset acquired during 34 commonly used hand gestures, (2) maximal voluntary muscle contraction (MVC) dataset while subjects contracted each individual finger, (3) one-degree of freedom (DoF) dataset acquired during force-varying contraction of each individual finger, (4) N-DoF dataset acquired during prescribed contractions of combinations of multiple fingers, and (5) random task dataset acquired during random contraction of combinations of fingers without any prescribed force trajectory. Dataset 1 can be used for gesture recognition studies. Datasets 2-5 also recorded individual finger forces, thus can be used for studies on proportional control of neuroprostheses. Our toolbox can be used to: (1) analyze each of the five datasets using standard benchmark methods and (2) decompose HD-sEMG signals into motor unit action potentials via independent component analysis. We expect our dataset, toolbox and benchmark analyses can provide a unique platform to promote a wide range of neural interface research and collaboration among neural rehabilitation engineers.
我们提供了一个高密度表面肌电图 (HD-sEMG) 记录的开放获取数据集 (命名为“ Hyser ”),这是一个神经接口研究工具包,以及用于模式识别和 EMG-力应用的基准结果。每个主题的数据都是在不同的两天内按照相同的实验方案采集两次获得的。我们在灵巧的手指操作过程中从前臂肌肉采集了 256 通道的 HD-sEMG。这个 Hyser 数据集包含五个子数据集:(1)在 34 个常用手部手势期间采集的模式识别 (PR) 数据集,(2)在每个手指最大自愿收缩 (MVC) 期间采集的数据集,(3)在每个手指力变化收缩期间采集的一自由度 (DoF) 数据集,(4)在多个手指组合的规定收缩期间采集的 N-DoF 数据集,以及(5)在无任何规定力轨迹的手指组合的随机收缩期间采集的随机任务数据集。数据集 1 可用于手势识别研究。数据集 2-5 还记录了各个手指的力,因此可用于神经假体比例控制的研究。我们的工具箱可用于:(1) 使用标准基准方法分析五个数据集之一,以及(2) 通过独立成分分析将 HD-sEMG 信号分解为运动单元动作电位。我们希望我们的数据集,工具箱和基准分析可以提供一个独特的平台,以促进广泛的神经接口研究和神经康复工程师之间的合作。