Suppr超能文献

用于手势的多通道表面肌电(sEMG)信号的数据集。

Dataset for multi-channel surface electromyography (sEMG) signals of hand gestures.

作者信息

Ozdemir Mehmet Akif, Kisa Deniz Hande, Guren Onan, Akan Aydin

机构信息

Izmir Katip Celebi University, Faculty of Engineering and Architecture, Department of Biomedical Engineering, Cigli, Izmir 35620, Turkey.

Izmir University of Economics, Faculty of Engineering, Department of Electrical and Electronics Engineering, Balcova, Izmir 35330, Turkey.

出版信息

Data Brief. 2022 Feb 4;41:107921. doi: 10.1016/j.dib.2022.107921. eCollection 2022 Apr.

Abstract

This paper presents an electromyography (EMG) signal dataset for use in human-computer interaction studies. The dataset includes 4-channel surface EMG data from 40 participants with an equal gender distribution. The gestures in the data are rest or neutral state, extension of the wrist, flexion of the wrist, ulnar deviation of the wrist, radial deviation of the wrist, grip, abduction of all fingers, adduction of all fingers, supination, and pronation. Data were collected from 4 forearm muscles when simulating 10 unique hand gestures and recorded with the BIOPAC MP36 device using Ag/AgCl surface bipolar electrodes. Each participant's data contains five repetitive cycles of ten hand gestures. A demographic survey was applied to the participants before the signal recording process. This data can be utilized for recognition, classification, and prediction studies in order to develop EMG-based hand movement controller systems. The dataset can also be useful as a reference to create an artificial intelligence model (especially a deep learning model) to detect gesture-related EMG signals. Additionally, it is encouraged to use the proposed dataset for benchmarking current datasets in the literature or for validation of machine learning and deep learning models created with different datasets in accordance with the participant-independent validation strategy.

摘要

本文展示了一个用于人机交互研究的肌电图(EMG)信号数据集。该数据集包含来自40名参与者的4通道表面肌电图数据,性别分布均匀。数据中的手势包括休息或中立状态、手腕伸展、手腕弯曲、手腕尺偏、手腕桡偏、抓握、所有手指外展、所有手指内收、旋后和旋前。在模拟10种独特手势时,从4块前臂肌肉采集数据,并使用Ag/AgCl表面双极电极通过BIOPAC MP36设备进行记录。每个参与者的数据包含10种手势的五个重复周期。在信号记录过程之前,对参与者进行了人口统计学调查。该数据可用于识别、分类和预测研究,以开发基于肌电图的手部运动控制器系统。该数据集还可作为创建人工智能模型(特别是深度学习模型)以检测与手势相关的肌电图信号的参考。此外,鼓励使用所提出的数据集对文献中的当前数据集进行基准测试,或根据参与者独立验证策略对使用不同数据集创建的机器学习和深度学习模型进行验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da2d/8844426/f96bfe9e3978/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验