Singh Nivedita, Khan Faiz M, Bala Lakshmi, Vera Julio, Wolkenhauer Olaf, Pützer Brigitte, Logotheti Stella, Gupta Shailendra K
Department of Biochemistry, BBDCODS, BBD University, Lucknow, Uttar Pradesh, India.
MRC Laboratory for Molecular Cell Biology, University College London, London, UK.
BMC Chem. 2023 Nov 22;17(1):161. doi: 10.1186/s13065-023-01082-2.
Melanoma presents increasing prevalence and poor outcomes. Progression to aggressive stages is characterized by overexpression of the transcription factor E2F1 and activation of downstream prometastatic gene regulatory networks (GRNs). Appropriate therapeutic manipulation of the E2F1-governed GRNs holds the potential to prevent metastasis however, these networks entail complex feedback and feedforward regulatory motifs among various regulatory layers, which make it difficult to identify druggable components. To this end, computational approaches such as mathematical modeling and virtual screening are important tools to unveil the dynamics of these signaling networks and identify critical components that could be further explored as therapeutic targets. Herein, we integrated a well-established E2F1-mediated epithelial-mesenchymal transition (EMT) map with transcriptomics data from E2F1-expressing melanoma cells to reconstruct a core regulatory network underlying aggressive melanoma. Using logic-based in silico perturbation experiments of a core regulatory network, we identified that simultaneous perturbation of Protein kinase B (AKT1) and oncoprotein murine double minute 2 (MDM2) drastically reduces EMT in melanoma. Using the structures of the two protein signatures, virtual screening strategies were performed with the FDA-approved drug library. Furthermore, by combining drug repurposing and computer-aided drug design techniques, followed by molecular dynamics simulation analysis, we identified two potent drugs (Tadalafil and Finasteride) that can efficiently inhibit AKT1 and MDM2 proteins. We propose that these two drugs could be considered for the development of therapeutic strategies for the management of aggressive melanoma.
黑色素瘤的发病率呈上升趋势,且预后较差。进展至侵袭性阶段的特征是转录因子E2F1的过表达以及下游促转移基因调控网络(GRNs)的激活。对E2F1调控的GRNs进行适当的治疗性调控有可能预防转移,然而,这些网络在不同调控层之间存在复杂的反馈和前馈调控基序,这使得难以识别可成药的成分。为此,诸如数学建模和虚拟筛选等计算方法是揭示这些信号网络动态并识别可作为治疗靶点进一步探索的关键成分的重要工具。在此,我们将一个成熟的E2F1介导的上皮-间质转化(EMT)图谱与来自表达E2F1的黑色素瘤细胞的转录组学数据相结合,以重建侵袭性黑色素瘤潜在的核心调控网络。通过对核心调控网络进行基于逻辑的计算机模拟扰动实验,我们发现同时扰动蛋白激酶B(AKT1)和癌蛋白小鼠双微体2(MDM2)可显著降低黑色素瘤中的EMT。利用这两种蛋白质特征的结构,对FDA批准的药物库进行了虚拟筛选策略。此外,通过结合药物再利用和计算机辅助药物设计技术,随后进行分子动力学模拟分析,我们确定了两种有效药物(他达拉非和非那雄胺),它们可以有效抑制AKT1和MDM2蛋白。我们建议可以考虑将这两种药物用于开发治疗侵袭性黑色素瘤的治疗策略。