预测结直肠肝转移消融后局部肿瘤进展:消融区 CT 影像组学。
Predicting local tumour progression after ablation for colorectal liver metastases: CT-based radiomics of the ablation zone.
机构信息
Department of Radiology, Antoni van Leeuwenhoek - The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands.
Department of Radiology, Antoni van Leeuwenhoek - The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands.
出版信息
Eur J Radiol. 2021 Aug;141:109773. doi: 10.1016/j.ejrad.2021.109773. Epub 2021 May 12.
PURPOSE
To assess whether CT-based radiomics of the ablation zone (AZ) can predict local tumour progression (LTP) after thermal ablation for colorectal liver metastases (CRLM).
MATERIALS AND METHODS
Eighty-two patients with 127 CRLM were included. Radiomics features (with different filters) were extracted from the AZ and a 10 mm periablational rim (PAR)on portal-venous-phase CT up to 8 weeks after ablation. Multivariable stepwise Cox regression analyses were used to predict LTP based on clinical and radiomics features. Performance (concordance [c]-statistics) of the different models was compared and performance in an 'independent' dataset was approximated with bootstrapped leave-one-out-cross-validation (LOOCV).
RESULTS
Thirty-three lesions (26 %) developed LTP. Median follow-up was 21 months (range 6-115). The combined model, a combination of clinical and radiomics features, included chemotherapy (HR 0.50, p = 0.024), cT-stage (HR 10.13, p = 0.016), lesion size (HR 1.11, p = <0.001), AZ_Skewness (HR 1.58, p = 0.016), AZ_Uniformity (HR 0.45, p = 0.002), PAR_Mean (HR 0.52, p = 0.008), PAR_Skewness (HR 1.67, p = 0.019) and PAR_Uniformity (HR 3.35, p < 0.001) as relevant predictors for LTP. The predictive performance of the combined model (after LOOCV) yielded a c-statistic of 0.78 (95 %CI 0.65-0.87), compared to the clinical or radiomics models only (c-statistic 0.74 (95 %CI 0.58-0.84) and 0.65 (95 %CI 0.52-0.83), respectively).
CONCLUSION
Combining radiomics features with clinical features yielded a better performing prediction of LTP than radiomics only. CT-based radiomics of the AZ and PAR may have potential to aid in the prediction of LTP during follow-up in patients with CRLM.
目的
评估消融区(AZ)的 CT 放射组学是否可以预测结直肠癌肝转移(CRLM)热消融后局部肿瘤进展(LTP)。
材料与方法
纳入 82 例 127 个 CRLM 患者。在消融后 8 周内,使用 portal-venous 相位 CT 从 AZ 和 10mm 消融周缘(PAR)提取放射组学特征(不同滤波器)。使用多变量逐步 Cox 回归分析基于临床和放射组学特征预测 LTP。比较不同模型的性能(一致性[c]-统计量),并通过 bootstrap 留一法交叉验证(LOOCV)近似评估“独立”数据集的性能。
结果
33 个病灶(26%)发生 LTP。中位随访时间为 21 个月(范围 6-115)。联合模型,一种临床和放射组学特征的组合,包括化疗(HR 0.50,p=0.024)、cT 期(HR 10.13,p=0.016)、病变大小(HR 1.11,p<0.001)、AZ_Skewness(HR 1.58,p=0.016)、AZ_Uniformity(HR 0.45,p=0.002)、PAR_Mean(HR 0.52,p=0.008)、PAR_Skewness(HR 1.67,p=0.019)和 PAR_Uniformity(HR 3.35,p<0.001),作为 LTP 的相关预测因子。联合模型(经 LOOCV 后)的预测性能产生了 0.78 的 c 统计量(95%CI 0.65-0.87),而仅基于临床或放射组学模型的 c 统计量分别为 0.74(95%CI 0.58-0.84)和 0.65(95%CI 0.52-0.83)。
结论
将放射组学特征与临床特征相结合,对 LTP 的预测效果优于单纯的放射组学。基于 CT 的 AZ 和 PAR 的放射组学可能有助于预测 CRLM 患者随访期间的 LTP。