Radiology Department, Cukurova University Medical School, Cukurova University Medical Faculty, Balcali Campus, 01330, Saricam, Adana, Turkey.
Biostatistics Department, Cukurova University Medical School, Adana, Turkey.
Cardiovasc Intervent Radiol. 2023 Jun;46(6):713-725. doi: 10.1007/s00270-023-03454-6. Epub 2023 May 8.
To investigate the predictability of local tumor progression (LTP) after microwave ablation (MWA) in colorectal carcinoma liver metastases (CRLM) patients by magnetic resonance imaging (MRI) radiomics and clinical characteristics-based combined model.
Forty-two consecutive CRLM patients (67 tumors) with post-MWA complete response at 1st month MRI were included in this retrospective study. One hundred and eleven radiomics features were extracted for each tumor and for each phase by manual segmentation from pre-treatment MRI T2 fat-suppressed (Phase 2) and early arterial phase T1 fat-suppressed sequences (Phase 1). A clinical model was constructed using clinical data, two combined models were created with feature reduction and machine learning by combining clinical data and Phase 2 and Phase 1 radiomics features. The predicting performance for LTP development was investigated.
LTP developed in 7 patients (16.6%) and 11 tumors (16.4%). In the clinical model, the presence of extrahepatic metastases before MWA was associated with a high probability of LTP (p < 0.001). The pre-treatment levels of carbohydrate antigen 19-9 and carcinoembryonic antigen were higher in the LTP group (p = 0.010, p = 0.020, respectively). Patients with LTP had statistically significantly higher radiomics scores in both phases (p < 0.001 for Phase 2 and p = 0.001 for Phase 1). The classification performance of the combined model 2, created by using clinical data and Phase 2-based radiomics features, achieved the highest discriminative performance in predicting LTP (p = 0,014; the area under curve (AUC) value 0.981 (95% CI 0.948-0.990). The combined model 1, created using clinical data and Phase 1-based radiomics features (AUC value 0,927 (95% CI 0.860-0.993, p < 0.001)) and the clinical model alone [AUC value of 0.887 (95% CI 0.807-0.967, p < 0.001)] had similar performance.
Combined models based on clinical data and radiomics features obtained from T2 fat-suppressed and early arterial-phase T1 fat-suppressed MRI are valuable markers in predicting LTP after MWA in CRLM patients. Large-scale studies with internal and external validations are needed to come to a firm conclusion on the predictability of radiomics models in CRLM patients.
通过磁共振成像(MRI)放射组学和基于临床特征的联合模型,研究结直肠癌肝转移(CRLM)患者微波消融(MWA)后局部肿瘤进展(LTP)的预测性。
本回顾性研究纳入了 42 例 MWA 后第 1 个月 MRI 完全缓解的连续 CRLM 患者(67 个肿瘤)。通过手动分割,从预处理 MRI T2 脂肪抑制(相 2)和早期动脉期 T1 脂肪抑制序列(相 1)中为每个肿瘤提取了 111 个放射组学特征。使用临床数据构建了一个临床模型,通过结合临床数据和相 2 和相 1 放射组学特征进行特征降维和机器学习,创建了两个联合模型。研究了预测 LTP 发展的性能。
7 例(16.6%)和 11 个肿瘤(16.4%)发生 LTP。在临床模型中,MWA 前存在肝外转移与 LTP 发生的高概率相关(p<0.001)。LTP 组患者的癌胚抗原 19-9 和癌胚抗原的术前水平较高(p=0.010,p=0.020)。LTP 患者在两个阶段的放射组学评分均具有统计学意义(相 2 的 p<0.001,相 1 的 p=0.001)。通过使用临床数据和相 2 基于放射组学特征创建的联合模型 2 在预测 LTP 方面具有最高的判别性能(p=0.014;曲线下面积(AUC)值 0.981(95%CI 0.948-0.990)。使用临床数据和相 1 基于放射组学特征创建的联合模型 1(AUC 值为 0.927(95%CI 0.860-0.993,p<0.001))和单独的临床模型(AUC 值为 0.887(95%CI 0.807-0.967,p<0.001))具有相似的性能。
基于 T2 脂肪抑制和早期动脉期 T1 脂肪抑制 MRI 获得的临床数据和放射组学特征的联合模型是预测 CRLM 患者 MWA 后 LTP 的有价值的标志物。需要进行内部和外部验证的大规模研究,才能对 CRLM 患者放射组学模型的预测性得出明确结论。