Suppr超能文献

机械应变改变胶原原纤维的表面电荷。

Mechanical Strain Alters the Surface Charge of Collagen Fibrils.

机构信息

Department of Physics, King's College London, London WC2R 2LS, United Kingdom.

出版信息

ACS Nano. 2021 Jun 22;15(6):9820-9826. doi: 10.1021/acsnano.1c00682. Epub 2021 May 23.

Abstract

Collagen fibrils act like nanoscale cables in the extracellular matrix of vertebrate tissues and provide a scaffold for cells to attach to. However, beyond this mechanical function, the surface charge of collagen fibrils is also likely to play an important role. Here, we show that native, type I collagen fibrils from a mammal tendon exhibit a particular dependence of surface charge on longitudinal strain. Fibrils first become more positive with strain of up to 10% and then become more negative again with strain between 10 and 17%. The effect correlates with the stiffness of fibrils and can be explained by structural rearrangements, which expose hidden, ionizable residues. Fibrils treated with glutaraldehyde did not show any change in surface charge when strained. The electrical surface potential, which is directly related to the number ratio of exposed amine and carboxy groups on the surface, was determined by Kelvin-probe force microscopy of fibrils attached on an extensible, thin polymer film. By stretching the film, a large number of individual fibrils could be strained simultaneously without resorting to sophisticated nanomechanical devices. It is conceivable that cells react to such changes of the fibril charge and that this effect is an additional contributor, besides mechanics, to a number of physiological processes. It may also need to be considered in the design of tissue-engineering scaffolds.

摘要

胶原原纤维在脊椎动物组织的细胞外基质中充当类似纳米尺度的电缆,并为细胞附着提供支架。然而,除了这种机械功能外,胶原原纤维的表面电荷也可能起着重要作用。在这里,我们表明,来自哺乳动物肌腱的天然 I 型胶原原纤维表现出表面电荷对纵向应变的特殊依赖性。原纤维在应变达到 10%之前先变得更带正电,然后在应变在 10%到 17%之间时再次变得更带负电。这种效应与原纤维的刚性相关,可以通过结构重排来解释,结构重排暴露出隐藏的可离子化残基。用戊二醛处理的原纤维在应变时不会显示出表面电荷的任何变化。通过附着在可拉伸的薄聚合物膜上的原纤维的 Kelvin 探针力显微镜确定了与表面上暴露的胺和羧基的数量比直接相关的电表面电势。通过拉伸膜,可以同时对大量的单个原纤维进行应变,而无需使用复杂的纳米力学装置。可以想象,细胞会对原纤维电荷的这种变化做出反应,并且除了力学之外,这种效应还是许多生理过程的另一个贡献者。在组织工程支架的设计中也可能需要考虑到这一点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验