Institute of Lightweight Design and Structural Biomechanics, TU Wien, Gumpendorfer Strasse 7, A-1060 Vienna, Austria.
Automation and Control Institute (ACIN), TU Wien, Gusshausstrasse 27-29, A-1040 Vienna, Austria.
Acta Biomater. 2024 Nov;189:208-216. doi: 10.1016/j.actbio.2024.08.039. Epub 2024 Aug 31.
Collagen fibrils are fundamental to the mechanical strength and function of biological tissues. However, they are susceptible to changes from non-enzymatic glycation, resulting in the formation of advanced glycation end-products (AGEs) that are not reversible. AGEs accumulate with aging and disease and can adversely impact tissue mechanics and cell-ECM interactions. AGE-crosslinks have been related, on the one hand, to dysregulation of collagen fibril stiffness and damage and, on the other hand, to altered collagen net surface charge as well as impaired cell recognition sites. While prior studies using Kelvin probe force microscopy (KPFM) have shown the effect glycation has on collagen fibril surface potential (i.e., net charge), the combined effect on individual and isolated collagen fibril mechanics, hydration, and surface potential has not been documented. Here, we explore how methylglyoxal (MGO) treatment affects the mechanics and surface potential of individual and isolated collagen fibrils by utilizing atomic force microscopy (AFM) nanoindentation and KPFM. Our results reveal that MGO treatment significantly increases nanostiffness, alters surface potential, and modifies hydration characteristics at the collagen fibril level. These findings underscore the critical impact of AGEs on collagen fibril physicochemical properties, offering insights into pathophysiological mechanical and biochemical alterations with implications for cell mechanotransduction during aging and in diabetes. STATEMENT OF SIGNIFICANCE: Collagen fibrils are susceptible to glycation, the irreversible reaction of amino acids with sugars. Glycation affects the mechanical properties and surface chemistry of collagen fibrils with adverse alterations in biological tissue mechanics and cell-ECM interactions. Current research on glycation, at the level of individual collagen fibrils, is sparse and has focused either on collagen fibril mechanics, with contradicting evidence, or surface potential. Here, we utilized a multimodal approach combining Kelvin probe force (KPFM) and atomic force microscopy (AFM) to examine how methylglyoxal glycation induces structural, mechanical, and surface potential changes on the same individual and isolated collagen fibrils. This approach helps inform structure-function relationships at the level of individual collagen fibrils.
胶原纤维是生物组织力学强度和功能的基础。然而,它们容易受到非酶糖基化的影响,导致形成不可逆转的晚期糖基化终产物(AGEs)。AGEs 随着年龄的增长和疾病的发生而积累,并可能对组织力学和细胞-细胞外基质相互作用产生不利影响。AGE 交联一方面与胶原纤维硬度和损伤的失调有关,另一方面与胶原净表面电荷的改变以及细胞识别部位的受损有关。虽然先前使用 Kelvin 探针力显微镜(KPFM)的研究表明了糖基化对胶原纤维表面电位(即净电荷)的影响,但关于单个和分离的胶原纤维力学、水合作用和表面电位的综合影响尚未有文献记载。在这里,我们通过原子力显微镜(AFM)纳米压痕和 KPFM 来研究 MGO 处理如何影响单个和分离的胶原纤维的力学和表面电位。我们的结果表明,MGO 处理显著增加了纳米硬度,改变了表面电位,并改变了胶原纤维水平的水合特性。这些发现强调了 AGEs 对胶原纤维物理化学性质的关键影响,为衰老和糖尿病期间细胞机械转导的病理生理学机械和生化改变提供了见解。
胶原纤维容易发生糖基化,即氨基酸与糖的不可逆反应。糖基化会影响胶原纤维的机械性能和表面化学性质,导致生物组织力学和细胞-细胞外基质相互作用发生不良改变。目前关于糖基化的研究,在单个胶原纤维水平上,还很缺乏,要么集中在胶原纤维的力学上,要么集中在表面电位上,但都存在相互矛盾的证据。在这里,我们采用了一种结合 Kelvin 探针力(KPFM)和原子力显微镜(AFM)的多模态方法,研究了甲基乙二醛糖基化如何在同一单个和分离的胶原纤维上诱导结构、力学和表面电位变化。这种方法有助于了解单个胶原纤维水平的结构-功能关系。