Suppr超能文献

负责任的人工智能作为数字健康的秘诀:文献计量分析、见解与研究方向

Responsible Artificial Intelligence as a Secret Ingredient for Digital Health: Bibliometric Analysis, Insights, and Research Directions.

作者信息

Fosso Wamba Samuel, Queiroz Maciel M

机构信息

Information, Operations and Management Sciences, TBS Business School, 1 Place Alphonse Jourdain, 31068 Toulouse, France.

Paulista University - UNIP, Postgraduate Program in Business Administration, Dr. Bacelar Street 1212, 04026-002 Sao Paulo, Brazil.

出版信息

Inf Syst Front. 2021 May 15:1-16. doi: 10.1007/s10796-021-10142-8.

Abstract

With the unparallel advance of leading-edge technologies like artificial intelligence (AI), the healthcare systems are transforming and shifting for more digital health. In recent years, scientific productions have reached unprecedented levels. However, a holistic view of how AI is being used for digital health remains scarce. Besides, there is a considerable lack of studies on responsible AI and ethical issues that identify and suggest practitioners' essential insights towards the digital health domain. Therefore, we aim to rely on a bibliometric approach to explore the dynamics of the interplay between AI and digital health approaches, considering the responsible AI and ethical aspects of scientific production over the years. We found four distinct periods in the publication dynamics and the most popular approaches of AI in the healthcare field. Also, we highlighted the main trends and insightful directions for scholars and practitioners. In terms of contributions, this work provides a framework integrating AI technologies approaches and applications while discussing several barriers and benefits of AI-based health. In addition, five insightful propositions emerged as a result of the main findings. Thus, this study's originality is regarding the new framework and the propositions considering responsible AI and ethical issues on digital health.

摘要

随着人工智能(AI)等前沿技术的飞速发展,医疗保健系统正在转型并朝着更多数字健康方向转变。近年来,科研成果达到了前所未有的水平。然而,对于人工智能如何用于数字健康的整体看法仍然匮乏。此外,关于负责任的人工智能以及识别并向从业者提出对数字健康领域的基本见解的伦理问题的研究相当缺乏。因此,我们旨在依靠文献计量学方法来探索人工智能与数字健康方法之间相互作用的动态情况,同时考虑多年来科研成果中负责任的人工智能和伦理方面。我们在出版动态中发现了四个不同时期以及医疗保健领域中人工智能最流行的方法。此外,我们突出了学者和从业者的主要趋势和有见地的方向。在贡献方面,这项工作提供了一个整合人工智能技术方法和应用的框架,同时讨论了基于人工智能的健康的若干障碍和益处。此外,主要研究结果产生了五个有见地的命题。因此,本研究的新颖之处在于考虑数字健康中负责任的人工智能和伦理问题的新框架和命题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58f0/8122192/2963819abb59/10796_2021_10142_Fig1_HTML.jpg

相似文献

5
Bibliometric analysis of artificial intelligence in healthcare research: Trends and future directions.
Future Healthc J. 2024 Sep 3;11(3):100182. doi: 10.1016/j.fhj.2024.100182. eCollection 2024 Sep.
6
SHIFTing artificial intelligence to be responsible in healthcare: A systematic review.
Soc Sci Med. 2022 Mar;296:114782. doi: 10.1016/j.socscimed.2022.114782. Epub 2022 Feb 4.
7
Recommendations for ethical and responsible use of artificial intelligence in digital agriculture.
Front Artif Intell. 2022 Jul 29;5:884192. doi: 10.3389/frai.2022.884192. eCollection 2022.
8
Navigating the AI frontiers in cardiovascular research: a bibliometric exploration and topic modeling.
Front Cardiovasc Med. 2024 Jan 3;10:1308668. doi: 10.3389/fcvm.2023.1308668. eCollection 2023.
9
Trends in artificial intelligence in nursing: Impacts on nursing management.
J Nurs Manag. 2022 Nov;30(8):3644-3653. doi: 10.1111/jonm.13770. Epub 2022 Aug 25.
10
The ethics of advancing artificial intelligence in healthcare: analyzing ethical considerations for Japan's innovative AI hospital system.
Front Public Health. 2023 Jul 17;11:1142062. doi: 10.3389/fpubh.2023.1142062. eCollection 2023.

引用本文的文献

1
The evolution of digital health: a global, Latin American, and Brazilian bibliometric analysis.
Front Digit Health. 2025 May 30;7:1582719. doi: 10.3389/fdgth.2025.1582719. eCollection 2025.
3
Collaborative arts therapies as a supportive intervention for autism spectrum disorders: Bibliometric analysis, insights, and directions.
Heliyon. 2024 Dec 19;11(1):e41333. doi: 10.1016/j.heliyon.2024.e41333. eCollection 2025 Jan 15.
5
Exploring the potential of digital therapeutics: An assessment of progress and promise.
Digit Health. 2024 Sep 12;10:20552076241277441. doi: 10.1177/20552076241277441. eCollection 2024 Jan-Dec.
6
Revolutionising healthcare with artificial intelligence: A bibliometric analysis of 40 years of progress in health systems.
Digit Health. 2024 May 28;10:20552076241258757. doi: 10.1177/20552076241258757. eCollection 2024 Jan-Dec.
7
Stuck in translation: Stakeholder perspectives on impediments to responsible digital health.
Front Digit Health. 2023 Feb 6;5:1069410. doi: 10.3389/fdgth.2023.1069410. eCollection 2023.
8
Bibliometric analysis on the adoption of artificial intelligence applications in the e-health sector.
Digit Health. 2023 Jan 17;9:20552076221149296. doi: 10.1177/20552076221149296. eCollection 2023 Jan-Dec.
9
The Application of the Principles of Responsible AI on Social Media Marketing for Digital Health.
Inf Syst Front. 2021 Sep 13:1-25. doi: 10.1007/s10796-021-10191-z.

本文引用的文献

1
Impact of Provider Prior Use of HIE on System Complexity, Performance, Patient Care, Quality and System Concerns.
Inf Syst Front. 2022;24(1):121-131. doi: 10.1007/s10796-020-10064-x. Epub 2020 Sep 23.
3
Scalable and accurate deep learning with electronic health records.
NPJ Digit Med. 2018 May 8;1:18. doi: 10.1038/s41746-018-0029-1. eCollection 2018.
4
Machine Learning in Medicine.
N Engl J Med. 2019 Apr 4;380(14):1347-1358. doi: 10.1056/NEJMra1814259.
5
Digitization of healthcare organizations: The digital health landscape and information theory.
Int J Med Inform. 2019 Apr;124:49-57. doi: 10.1016/j.ijmedinf.2019.01.007. Epub 2019 Jan 11.
6
High-performance medicine: the convergence of human and artificial intelligence.
Nat Med. 2019 Jan;25(1):44-56. doi: 10.1038/s41591-018-0300-7. Epub 2019 Jan 7.
7
The practical implementation of artificial intelligence technologies in medicine.
Nat Med. 2019 Jan;25(1):30-36. doi: 10.1038/s41591-018-0307-0. Epub 2019 Jan 7.
8
A guide to deep learning in healthcare.
Nat Med. 2019 Jan;25(1):24-29. doi: 10.1038/s41591-018-0316-z. Epub 2019 Jan 7.
9
Machine learning in medicine: Addressing ethical challenges.
PLoS Med. 2018 Nov 6;15(11):e1002689. doi: 10.1371/journal.pmed.1002689. eCollection 2018 Nov.
10
Clinically applicable deep learning for diagnosis and referral in retinal disease.
Nat Med. 2018 Sep;24(9):1342-1350. doi: 10.1038/s41591-018-0107-6. Epub 2018 Aug 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验