Holanda Ledycnarf J, Fernandes Ana Paula M, de Amorim Júlia A, Matias Aryel M, Nunes Netto Severino P, Nagem Danilo A P, Valentim Ricardo A de M, Morya Edgard, Lindquist Ana Raquel
Laboratory of Intervention and Analysis of Movement, Department of Physical Therapy, Federal University of Rio Grande do Norte, Natal, Brazil.
Laboratory of Technological Innovation in Health, Federal University of Rio Grande do Norte, Natal, Brazil.
Front Neurosci. 2021 May 7;15:660141. doi: 10.3389/fnins.2021.660141. eCollection 2021.
Adaptive algorithms for controlling orthosis emerged to overcome significant problems with automatic biosignal classification and personalized rehabilitation. Smart orthoses are evolving fast and need a better human-machine interaction performance since biosignals, feedback, and motor control dynamically change and must be adaptive. This manuscript outlines a scoping review protocol to systematically review the smart upper limb (UL) orthoses based on adaptive algorithms and feasibility tests. This protocol was developed based on the York framework. A field-specific structure was defined to achieve each phase. Eleven scientific databases (PubMed, Web of Science, SciELO, Koreamed, Jstage, AMED, CENTRAL, PEDro, IEEE, Scopus, and Arxiv) and five patent databases (Patentscope, Patentlens, Google Patents, Kripis, J-platpat) were searched. The developed framework will extract data (i.e., orthosis description, adaptive algorithms, tools used in the usability test, and benefits to the general population) from the selected studies using a rigorous approach. Data will be described quantitatively using frequency and trend analysis methods. Heterogeneity between the included studies will be assessed using the Chi-test and I-statistic. The risk of bias will be summarized using the latest Prediction Model Study Risk of Bias Assessment Tool. This review will identify, map, and synthesize the advances about the description of adaptive algorithms for control strategies of smart UL orthosis using data extracted from patents and articles.
用于控制矫形器的自适应算法应运而生,以克服自动生物信号分类和个性化康复方面的重大问题。智能矫形器发展迅速,由于生物信号、反馈和运动控制会动态变化且必须具有适应性,因此需要更好的人机交互性能。本手稿概述了一项范围综述方案,以系统评价基于自适应算法和可行性测试的智能上肢(UL)矫形器。该方案是基于约克框架制定的。定义了一个特定领域的结构来完成每个阶段。检索了11个科学数据库(PubMed、科学网、SciELO、韩国医学、Jstage、AME D、CENTRAL、PEDro、IEEE、Scopus和Arxiv)和5个专利数据库(Patentscope、Patentlens、谷歌专利、Kripis、J-platpat)。所开发的框架将采用严格的方法从选定的研究中提取数据(即矫形器描述、自适应算法、可用性测试中使用的工具以及对普通人群的益处)。将使用频率和趋势分析方法对数据进行定量描述。将使用卡方检验和I统计量评估纳入研究之间的异质性。将使用最新的预测模型研究偏倚风险评估工具总结偏倚风险。本综述将利用从专利和文章中提取的数据,识别、绘制并综合关于智能UL矫形器控制策略自适应算法描述的进展。