Guilbault Emy, Renner Ian, Mahony Michael, Beh Eric
Faculty of Science School of Mathematical and Physical Sciences The University of Newcastle Callaghan NSW Australia.
Faculty of Science School of Environmental and Life Sciences The University of Newcastle Callaghan NSW Australia.
Ecol Evol. 2021 Apr 1;11(10):5220-5243. doi: 10.1002/ece3.7411. eCollection 2021 May.
Species distribution modeling, which allows users to predict the spatial distribution of species with the use of environmental covariates, has become increasingly popular, with many software platforms providing tools to fit such models. However, the species observations used can have varying levels of quality and can have incomplete information, such as uncertain or unknown species identity.In this paper, we develop two algorithms to classify observations with unknown species identities which simultaneously predict several species distributions using spatial point processes. Through simulations, we compare the performance of these algorithms using 7 different initializations to the performance of models fitted using only the observations with known species identity.We show that performance varies with differences in correlation among species distributions, species abundance, and the proportion of observations with unknown species identities. Additionally, some of the methods developed here outperformed the models that did not use the misspecified data. We applied the best-performing methods to a dataset of three frog species ().These models represent a helpful and promising tool for opportunistic surveys where misidentification is possible or for the distribution of species newly separated in their taxonomy.
物种分布建模允许用户利用环境协变量预测物种的空间分布,这种方法越来越受欢迎,许多软件平台都提供了拟合此类模型的工具。然而,所使用的物种观测数据可能具有不同程度的质量,并且可能存在信息不完整的情况,例如物种身份不确定或未知。在本文中,我们开发了两种算法来对物种身份未知的观测数据进行分类,这些算法同时使用空间点过程预测多个物种的分布。通过模拟,我们将这两种算法在7种不同初始化情况下的性能与仅使用已知物种身份观测数据拟合的模型的性能进行了比较。我们发现,性能会因物种分布之间的相关性、物种丰度以及物种身份未知的观测数据所占比例的不同而有所变化。此外,这里开发的一些方法优于未使用错误指定数据的模型。我们将性能最佳的方法应用于一个包含三种蛙类物种的数据集。这些模型对于可能出现错误识别的机会性调查或对于分类学上新分离物种的分布来说,是一种有用且有前景的工具。