Suppr超能文献

使用地理和时间加权回归对COVID-19传播与人口流动之间的时空关联进行建模。

Modeling the Spatiotemporal Association Between COVID-19 Transmission and Population Mobility Using Geographically and Temporally Weighted Regression.

作者信息

Chen Yixiang, Chen Min, Huang Bo, Wu Chao, Shi Wenjia

机构信息

School of Geographic and Biologic Information Nanjing University of Posts and Telecommunications Nanjing China.

Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province Nanjing China.

出版信息

Geohealth. 2021 May 1;5(5):e2021GH000402. doi: 10.1029/2021GH000402. eCollection 2021 May.

Abstract

The ongoing Coronavirus Disease 2019 (COVID-19) has posed a serious threat to human public health and global economy. Population mobility is an important factor that drives the spread of COVID-19. This study aimed to quantitatively evaluate the impact of population flow on the spread of COVID-19 from a spatiotemporal perspective. To this end, a case study was carried out in Hubei Province, which was once the most affected area of COVID-19 outbreak in Mainland China. The geographically and temporally weighted regression (GTWR) model was applied to model the spatiotemporal association between COVID-19 epidemic and population mobility. Two patterns of population flows, including the population inflow from Wuhan and intra-city population movement, were considered to construct explanatory variables. Results indicate that the GTWR model can reveal the spatial-temporal-varying relationships between COVID-19 and population mobility. Moreover, the association between COVID-19 case counts and population movements presented three stages of temporal variation characteristics due to the virus incubation period and implementation of strict lockdown measures. In the spatial dimension, evident geographical disparities were observed across Hubei Province. These findings can provide policymakers useful knowledge about the impact of population movement on the spatio-temporal transmission of COVID-19. Thus, targeted interventions, if necessary in certain time periods, can be implemented to restrict population flow in cities with high transmission risk.

摘要

持续的2019冠状病毒病(COVID-19)对人类公共卫生和全球经济构成了严重威胁。人口流动是推动COVID-19传播的一个重要因素。本研究旨在从时空角度定量评估人口流动对COVID-19传播的影响。为此,在湖北省开展了一项案例研究,湖北省曾是中国大陆COVID-19疫情最严重的地区。应用地理和时间加权回归(GTWR)模型对COVID-19疫情与人口流动之间的时空关联进行建模。考虑了两种人口流动模式,包括从武汉的人口流入和城市内部人口流动,以构建解释变量。结果表明,GTWR模型能够揭示COVID-19与人口流动之间的时空变化关系。此外,由于病毒潜伏期和严格封锁措施的实施,COVID-19病例数与人口流动之间的关联呈现出三个阶段的时间变化特征。在空间维度上,湖北省各地存在明显的地理差异。这些发现可以为政策制定者提供有关人口流动对COVID-19时空传播影响的有用知识。因此,在必要的特定时间段内,可以实施有针对性的干预措施,以限制高传播风险城市的人口流动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16ea/8121019/87c9d0fdda6f/GH2-5-e2021GH000402-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验