Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China.
Mianyang Academy of Agricultural Sciences, Mianyang, China.
Physiol Plant. 2021 Aug;172(4):2170-2180. doi: 10.1111/ppl.13466. Epub 2021 Jun 8.
Microelements are necessary for plant growth and development, they control key processes of physiological metabolism. Herein, we evaluated three accumulation-related performances for each of the four microelements (Fe, Zn, Cu, and Mn) among 305 inbred maize lines. Quantification of these microelements in maize roots and shoots revealed abundant phenotypic variations in the association panel, with the variation coefficients ranging from 0.31 to 0.76. Principal component analysis (PCA) of the three related traits (concentration in root, concentration in shoot, and transport coefficient) showed that PC1 and PC2 explained >95% of phenotypic variations for each element. The scores of PC1 and PC2 were thereby used for a genome-wide association study by combining 44,134 SNPs of this panel. A total of 27, 1, 5, and 3 SNPs were significantly (P < .05) associated with Zn-PC1, Zn-PC2, Cu-PC1, and Mn-PC2, respectively, with 11 genes closely linked (r > 0.8) to these SNPs. Of them, GRMZM2G142870, GRMZM2G045531, and GRMZM2G143512 were individually annotated as ABC transporter C family member 14, zinc transporter 3, and heavy metal ATPase10. A candidate gene association analysis further verified that GRMZM2G142870 and GRMZM2G045531 affect Zn and Mn accumulations, respectively. Evaluation of contrasting allele ratios in elite lines indicated that the majority of the alleles correlating with higher Zn or Cu had not been utilized in maize breeding. Integration of more "higher-accumulation" alleles in the elite lines will be practical for improving Zn and Cu accumulations in maize. Our findings contribute to genetic revelation and molecular marker-assisted selection of microelement accumulations in maize.
微量元素是植物生长和发育所必需的,它们控制着生理代谢的关键过程。在此,我们评估了 305 个自交系玉米中每一种(Fe、Zn、Cu 和 Mn)四种微量元素的三种积累相关性能。对玉米根和茎中这些微量元素的定量分析表明,在关联群体中存在丰富的表型变异,变异系数范围为 0.31 至 0.76。对三种相关性状(根中浓度、茎中浓度和运输系数)的主成分分析(PCA)表明,每个元素的 PC1 和 PC2 解释了 >95%的表型变异。因此,通过对该群体的 44134 个 SNP 进行全基因组关联研究,利用 PC1 和 PC2 的得分。共有 27、1、5 和 3 个 SNP 分别与 Zn-PC1、Zn-PC2、Cu-PC1 和 Mn-PC2 显著相关(P < .05),与这些 SNP 紧密连锁(r > 0.8)的有 11 个基因。其中,GRMZM2G142870、GRMZM2G045531 和 GRMZM2G143512 分别被注释为 ABC 转运蛋白 C 家族成员 14、锌转运蛋白 3 和重金属 ATPase10。候选基因关联分析进一步验证了 GRMZM2G142870 和 GRMZM2G045531 分别影响 Zn 和 Mn 的积累。对优良品种对比等位基因比例的评估表明,与较高 Zn 或 Cu 相关的大多数等位基因尚未在玉米育种中得到利用。在优良品种中整合更多的“高积累”等位基因将有助于提高玉米中 Zn 和 Cu 的积累。我们的研究结果为玉米中微量元素积累的遗传揭示和分子标记辅助选择提供了参考。