Suppr超能文献

使用跨诊断风险特征预测 9 岁和 10 岁儿童的自杀意念和自杀企图。

Prediction of suicidal ideation and attempt in 9 and 10 year-old children using transdiagnostic risk features.

机构信息

Department of Medical Informatics & Computational Epidemiology, Oregon Health & Science University, Portland, OR, United States of America.

Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States of America.

出版信息

PLoS One. 2021 May 25;16(5):e0252114. doi: 10.1371/journal.pone.0252114. eCollection 2021.

Abstract

The objective of the current study was to build predictive models for suicidal ideation in a sample of children aged 9-10 using features previously implicated in risk among older adolescent and adult populations. This case-control analysis utilized baseline data from the Adolescent Brain and Cognitive Development (ABCD) Study, collected from 21 research sites across the United States (N = 11,369). Several regression and ensemble learning models were compared on their ability to classify individuals with suicidal ideation and/or attempt from healthy controls, as assessed by the Kiddie Schedule for Affective Disorders and Schizophrenia-Present and Lifetime Version. When comparing control participants (mean age: 9.92±0.62 years; 4944 girls [49%]) to participants with suicidal ideation (mean age: 9.89±0.63 years; 451 girls [40%]), both logistic regression with feature selection and elastic net without feature selection predicted suicidal ideation with an AUC of 0.70 (CI 95%: 0.70-0.71). The random forest with feature selection trained to predict suicidal ideation predicted a holdout set of children with a history of suicidal ideation and attempt (mean age: 9.96±0.62 years; 79 girls [41%]) from controls with an AUC of 0.77 (CI 95%: 0.76-0.77). Important features from these models included feelings of loneliness and worthlessness, impulsivity, prodromal psychosis symptoms, and behavioral problems. This investigation provided an unprecedented opportunity to identify suicide risk in youth. The use of machine learning to examine a large number of predictors spanning a variety of domains provides novel insight into transdiagnostic factors important for risk classification.

摘要

本研究的目的是利用先前在青少年和成年人群体中与风险相关的特征,为 9-10 岁儿童样本构建自杀意念的预测模型。本病例对照分析利用了来自美国 21 个研究地点的青少年大脑与认知发展 (ABCD) 研究的基线数据(N=11369)。几种回归和集成学习模型在其对具有自杀意念和/或尝试的个体进行分类的能力方面进行了比较,评估方法是使用儿童情绪障碍和精神分裂症的 Kiddie 时间表-现在和终身版本。在比较对照组(平均年龄:9.92±0.62 岁;4944 名女孩[49%])和有自杀意念的参与者(平均年龄:9.89±0.63 岁;451 名女孩[40%])时,特征选择的逻辑回归和不带特征选择的弹性网络都预测了自杀意念,AUC 为 0.70(95%CI:0.70-0.71)。经过特征选择训练的随机森林预测具有自杀意念史的儿童和对照组儿童(平均年龄:9.96±0.62 岁;79 名女孩[41%])的预留集,AUC 为 0.77(95%CI:0.76-0.77)。这些模型的重要特征包括孤独感和无价值感、冲动、前驱精神病症状和行为问题。该研究为识别青少年自杀风险提供了一个前所未有的机会。使用机器学习来检查跨越各种领域的大量预测因素为重要的风险分类提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff5e/8148349/89d9fcc0f5f5/pone.0252114.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验