Suppr超能文献

基于双重选择知识转移学习的跨主体运动想象脑电分类

Dual selections based knowledge transfer learning for cross-subject motor imagery EEG classification.

作者信息

Luo Tian-Jian

机构信息

College of Computer and Cyber Security, Fujian Normal University, Fuzhou, China.

Digital Fujian Internet-of-Thing Laboratory of Environmental Monitoring, Fujian Normal University, Fuzhou, China.

出版信息

Front Neurosci. 2023 Nov 28;17:1274320. doi: 10.3389/fnins.2023.1274320. eCollection 2023.

Abstract

INTRODUCTION

Motor imagery electroencephalograph (MI-EEG) has attracted great attention in constructing non-invasive brain-computer interfaces (BCIs) due to its low-cost and convenience. However, only a few MI-EEG classification methods have been recently been applied to BCIs, mainly because they suffered from sample variability across subjects. To address this issue, the cross-subject scenario based on domain adaptation has been widely investigated. However, existing methods often encounter problems such as redundant features and incorrect pseudo-label predictions in the target domain.

METHODS

To achieve high performance cross-subject MI-EEG classification, this paper proposes a novel method called Dual Selections based Knowledge Transfer Learning (DS-KTL). DS-KTL selects both discriminative features from the source domain and corrects pseudo-labels from the target domain. The DS-KTL method applies centroid alignment to the samples initially, and then adopts Riemannian tangent space features for feature adaptation. During feature adaptation, dual selections are performed with regularizations, which enhance the classification performance during iterations.

RESULTS AND DISCUSSION

Empirical studies conducted on two benchmark MI-EEG datasets demonstrate the feasibility and effectiveness of the proposed method under multi-source to single-target and single-source to single-target cross-subject strategies. The DS-KTL method achieves significant classification performance improvement with similar efficiency compared to state-of-the-art methods. Ablation studies are also conducted to evaluate the characteristics and parameters of the proposed DS-KTL method.

摘要

引言

运动想象脑电图(MI-EEG)因其低成本和便利性,在构建非侵入式脑机接口(BCI)方面备受关注。然而,最近只有少数MI-EEG分类方法应用于BCI,主要是因为它们存在受试者间样本变异性的问题。为解决这一问题,基于域自适应的跨受试者场景已得到广泛研究。然而,现有方法在目标域中常常遇到诸如特征冗余和伪标签预测错误等问题。

方法

为实现高性能的跨受试者MI-EEG分类,本文提出一种名为基于双选的知识迁移学习(DS-KTL)的新方法。DS-KTL既从源域中选择判别性特征,又对目标域中的伪标签进行校正。DS-KTL方法首先对样本应用质心对齐,然后采用黎曼切线空间特征进行特征自适应。在特征自适应过程中,通过正则化进行双选,这在迭代过程中提高了分类性能。

结果与讨论

在两个基准MI-EEG数据集上进行的实证研究证明了所提方法在多源到单目标和单源到单目标跨受试者策略下的可行性和有效性。与现有方法相比,DS-KTL方法以相似的效率实现了显著的分类性能提升。还进行了消融研究以评估所提DS-KTL方法的特性和参数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7da/10713797/4b72c38a45c0/fnins-17-1274320-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验