Suppr超能文献

具有多个备选方案的决策修正泄漏竞争累加器模型:李代数方法

Modified leaky competing accumulator model of decision making with multiple alternatives: the Lie-algebraic approach.

作者信息

Lo Chi-Fai, Ip Ho-Yan

机构信息

Institute of Theoretical Physics and Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR.

出版信息

Sci Rep. 2021 May 25;11(1):10923. doi: 10.1038/s41598-021-90356-7.

Abstract

In this communication, based upon the stochastic Gompertz law of population growth, we have reformulated the Leaky Competing Accumulator (LCA) model with multiple alternatives such that the positive-definiteness of evidence accumulation is automatically satisfied. By exploiting the Lie symmetry of the backward Kolmogorov equation (or Fokker-Planck equation) assoicated with the modified model and applying the Wei-Norman theorem, we have succeeded in deriving the N-dimensional joint probability density function (p.d.f.) and marginal p.d.f. for each alternative in closed form. With this joint p.d.f., a likelihood function can be constructed and thus model-fitting procedures become feasible. We have also demonstrated that the calibration of model parameters based upon the Monte Carlo simulated time series is indeed both efficient and accurate. Moreover, it should be noted that the proposed Lie-algebraic approach can also be applied to tackle the modified LCA model with time-varying parameters.

摘要

在本通讯中,基于人口增长的随机冈珀茨定律,我们对具有多个备选方案的泄漏竞争累加器(LCA)模型进行了重新表述,从而自动满足证据积累的正定性。通过利用与修改后的模型相关的反向柯尔莫哥洛夫方程(或福克 - 普朗克方程)的李对称性,并应用魏 - 诺曼定理,我们成功地以封闭形式推导了每个备选方案的N维联合概率密度函数(p.d.f.)和边际p.d.f.。利用这个联合p.d.f.,可以构建似然函数,从而使模型拟合程序变得可行。我们还证明了基于蒙特卡罗模拟时间序列对模型参数进行校准确实既高效又准确。此外,应该注意的是,所提出的李代数方法也可应用于处理具有时变参数的修改后的LCA模型。

相似文献

4
Stochastic dynamics and denaturation of thermalized DNA.热化DNA的随机动力学与变性
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Feb;77(2 Pt 1):021918. doi: 10.1103/PhysRevE.77.021918. Epub 2008 Feb 28.
7
A non-autonomous stochastic predator-prey model.非自治随机捕食者-被捕食者模型。
Math Biosci Eng. 2014 Apr;11(2):167-88. doi: 10.3934/mbe.2014.11.167.
10

本文引用的文献

5
New advances in understanding decisions among multiple alternatives.对多种选择下决策的理解的新进展。
Curr Opin Neurobiol. 2012 Dec;22(6):920-6. doi: 10.1016/j.conb.2012.04.009. Epub 2012 May 2.
6
Optimal decision making in neural inhibition models.神经抑制模型中的最优决策。
Psychol Rev. 2012 Jan;119(1):201-15. doi: 10.1037/a0026275. Epub 2011 Nov 21.
8
Stochastic Gompertz model of tumour cell growth.肿瘤细胞生长的随机冈珀茨模型。
J Theor Biol. 2007 Sep 21;248(2):317-21. doi: 10.1016/j.jtbi.2007.04.024. Epub 2007 May 5.
10
A stochastic model in tumor growth.肿瘤生长的随机模型。
J Theor Biol. 2006 Sep 21;242(2):329-36. doi: 10.1016/j.jtbi.2006.03.001. Epub 2006 Apr 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验