Turner Brandon M, Sederberg Per B
Department of Psychology, Stanford University, Stanford, CA, USA,
Psychon Bull Rev. 2014 Apr;21(2):227-50. doi: 10.3758/s13423-013-0530-0.
Recent advancements in Bayesian modeling have allowed for likelihood-free posterior estimation. Such estimation techniques are crucial to the understanding of simulation-based models, whose likelihood functions may be difficult or even impossible to derive. However, current approaches are limited by their dependence on sufficient statistics and/or tolerance thresholds. In this article, we provide a new approach that requires no summary statistics, error terms, or thresholds and is generalizable to all models in psychology that can be simulated. We use our algorithm to fit a variety of cognitive models with known likelihood functions to ensure the accuracy of our approach. We then apply our method to two real-world examples to illustrate the types of complex problems our method solves. In the first example, we fit an error-correcting criterion model of signal detection, whose criterion dynamically adjusts after every trial. We then fit two models of choice response time to experimental data: the linear ballistic accumulator model, which has a known likelihood, and the leaky competing accumulator model, whose likelihood is intractable. The estimated posterior distributions of the two models allow for direct parameter interpretation and model comparison by means of conventional Bayesian statistics-a feat that was not previously possible.
贝叶斯建模的最新进展使得无似然后验估计成为可能。这种估计技术对于理解基于模拟的模型至关重要,因为这些模型的似然函数可能很难甚至无法推导出来。然而,当前的方法受到其对充分统计量和/或容忍阈值的依赖的限制。在本文中,我们提供了一种新方法,该方法不需要汇总统计量、误差项或阈值,并且可以推广到心理学中所有可以模拟的模型。我们使用我们的算法来拟合各种具有已知似然函数的认知模型,以确保我们方法的准确性。然后,我们将我们的方法应用于两个实际例子,以说明我们的方法所解决的复杂问题的类型。在第一个例子中,我们拟合了一个信号检测的误差校正标准模型,其标准在每次试验后动态调整。然后,我们将两个选择反应时间模型拟合到实验数据:具有已知似然性的线性弹道累加器模型和似然性难以处理的泄漏竞争累加器模型。这两个模型的估计后验分布允许通过传统的贝叶斯统计进行直接的参数解释和模型比较——这是以前不可能做到的。