Suppr超能文献

基于快速眼动睡眠微结构的单通道脑电图睡眠阶段分类

Single-channel EEG classification of sleep stages based on REM microstructure.

作者信息

Rechichi Irene, Zibetti Maurizio, Borzì Luigi, Olmo Gabriella, Lopiano Leonardo

机构信息

Department of Control and Computer Engineering Politecnico di Torino Torino Italy.

Department of Neuroscience "Rita Levi Montalcini" Università degli Studi di Torino Torino Italy.

出版信息

Healthc Technol Lett. 2021 Apr 20;8(3):58-65. doi: 10.1049/htl2.12007. eCollection 2021 Jun.

Abstract

Rapid-eye movement (REM) sleep, or paradoxical sleep, accounts for 20-25% of total night-time sleep in healthy adults and may be related, in pathological cases, to parasomnias. A large percentage of Parkinson's disease patients suffer from sleep disorders, including REM sleep behaviour disorder and hypokinesia; monitoring their sleep cycle and related activities would help to improve their quality of life. There is a need to accurately classify REM and the other stages of sleep in order to properly identify and monitor parasomnias. This study proposes a method for the identification of REM sleep from raw single-channel electroencephalogram data, employing novel features based on REM microstructures. Sleep stage classification was performed by means of random forest (RF) classifier, K-nearest neighbour (K-NN) classifier and random Under sampling boosted trees (RUSBoost); the classifiers were trained using a set of published and novel features. REM detection accuracy ranges from 89% to 92.7%, and the classifiers achieved a F-1 score (REM class) of about 0.83 (RF), 0.80 (K-NN), and 0.70 (RUSBoost). These methods provide encouraging outcomes in automatic sleep scoring and REM detection based on raw single-channel electroencephalogram, assessing the feasibility of a home sleep monitoring device with fewer channels.

摘要

快速眼动(REM)睡眠,即异相睡眠,占健康成年人夜间总睡眠时间的20%-25%,在病理情况下可能与异常睡眠有关。很大比例的帕金森病患者患有睡眠障碍,包括快速眼动睡眠行为障碍和运动功能减退;监测他们的睡眠周期及相关活动将有助于改善他们的生活质量。为了正确识别和监测异常睡眠,需要准确地对快速眼动睡眠和其他睡眠阶段进行分类。本研究提出了一种从原始单通道脑电图数据中识别快速眼动睡眠的方法,该方法采用基于快速眼动微结构的新特征。睡眠阶段分类通过随机森林(RF)分类器、K近邻(K-NN)分类器和随机欠采样增强树(RUSBoost)进行;这些分类器使用一组已发表的和新的特征进行训练。快速眼动检测准确率在89%至92.7%之间,分类器在快速眼动类别上的F-1分数约为0.83(RF)、0.80(K-NN)和0.70(RUSBoost)。这些方法在基于原始单通道脑电图的自动睡眠评分和快速眼动检测方面取得了令人鼓舞的成果,评估了使用较少通道的家庭睡眠监测设备的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24d4/8136764/5660bb3b38c0/HTL2-8-58-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验