Suppr超能文献

简单正则化神经网络中会突然出现自发的策略转换。

Abrupt and spontaneous strategy switches emerge in simple regularised neural networks.

机构信息

Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Berlin, Germany.

Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany.

出版信息

PLoS Comput Biol. 2024 Oct 21;20(10):e1012505. doi: 10.1371/journal.pcbi.1012505. eCollection 2024 Oct.

Abstract

Humans sometimes have an insight that leads to a sudden and drastic performance improvement on the task they are working on. Sudden strategy adaptations are often linked to insights, considered to be a unique aspect of human cognition tied to complex processes such as creativity or meta-cognitive reasoning. Here, we take a learning perspective and ask whether insight-like behaviour can occur in simple artificial neural networks, even when the models only learn to form input-output associations through gradual gradient descent. We compared learning dynamics in humans and regularised neural networks in a perceptual decision task that included a hidden regularity to solve the task more efficiently. Our results show that only some humans discover this regularity, and that behaviour is marked by a sudden and abrupt strategy switch that reflects an aha-moment. Notably, we find that simple neural networks with a gradual learning rule and a constant learning rate closely mimicked behavioural characteristics of human insight-like switches, exhibiting delay of insight, suddenness and selective occurrence in only some networks. Analyses of network architectures and learning dynamics revealed that insight-like behaviour crucially depended on a regularised gating mechanism and noise added to gradient updates, which allowed the networks to accumulate "silent knowledge" that is initially suppressed by regularised gating. This suggests that insight-like behaviour can arise from gradual learning in simple neural networks, where it reflects the combined influences of noise, gating and regularisation. These results have potential implications for more complex systems, such as the brain, and guide the way for future insight research.

摘要

人类有时会有一种洞察力,这种洞察力会导致他们在正在从事的任务上突然取得显著的进步。突然的策略调整通常与顿悟有关,被认为是人类认知的独特方面,与创造力或元认知推理等复杂过程有关。在这里,我们从学习的角度出发,探讨简单的人工神经网络是否也能产生类似于顿悟的行为,即使这些模型只能通过逐渐的梯度下降来学习形成输入-输出关联。我们在一个包含隐藏规则的感知决策任务中比较了人类和正则化神经网络的学习动态,以更有效地解决任务。我们的结果表明,只有一些人类能够发现这种规律性,而且行为的特点是突然和突然的策略转变,反映了一种顿悟时刻。值得注意的是,我们发现,具有渐进学习规则和恒定学习率的简单神经网络非常类似于人类顿悟的行为特征,表现出顿悟的延迟、突然性和选择性出现,只有一些网络会出现。对网络结构和学习动态的分析表明,顿悟行为的关键取决于正则化门控机制和添加到梯度更新中的噪声,这使得网络能够积累“沉默知识”,这些知识最初受到正则化门控的抑制。这表明,简单的神经网络可以通过渐进学习产生类似于顿悟的行为,这种行为反映了噪声、门控和正则化的综合影响。这些结果对于更复杂的系统,如大脑,具有潜在的影响,并为未来的洞察研究指明了方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f482/11527165/d9c6934d6f4c/pcbi.1012505.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验