Suppr超能文献

患者到机器人配准:机器人辅助立体定向的命运。

Patient-to-robot registration: The fate of robot-assisted stereotaxy.

机构信息

Department of Neurosurgery and Neurotechnology, Neurosurgical Clinic, Eberhard Karls University, Tuebingen, Germany.

Department of Neurosurgery and Neurotechnology, Institute for Neuromodulation and Neurotechnology, Eberhard Karls University, Tuebingen, Germany.

出版信息

Int J Med Robot. 2021 Oct;17(5):e2288. doi: 10.1002/rcs.2288. Epub 2021 Jun 5.

Abstract

BACKGROUND

Robot-assisted stereotaxy (RAS) promises higher stereotactic accuracy (SA) and time efficiency (TE) than frame-based stereotaxy. However, both aspects are attributed to the problem of patient-to-robot registration.

OBJECTIVE

To examine different registration techniques regarding their SA and TE.

METHODS

This study enrolled 57 patients undergoing RAS with bone fiducial registration (BFR) or laser surface registration (LSR). SA was measured by the entry point error (EPE). Additionally, predictors of SA (registration error [RegE], distance-to-registration plane [DTC]) and TE (imaging, skin-to-skin) were assessed.

RESULTS

The mean SA was 1.0 ± 0.8 mm. BFR increased SA by reducing RegE and DTC. In LSR, EPE depended on DTC (face and forehead) with highest accuracy for DTC ≤100 mm. CT-based LSR exerted a higher SA than MR-based LSR. In BFR, TE was confined by the additional imaging.

CONCLUSION

Every registration technique counteracts one of the promises of RAS. New solutions are needed to increase the acceptance of RAS in neurosurgery.

摘要

背景

机器人辅助立体定向术(RAS)比基于框架的立体定向术具有更高的立体定向准确性(SA)和时间效率(TE)。然而,这两个方面都归因于患者到机器人的配准问题。

目的

研究不同的配准技术在 SA 和 TE 方面的表现。

方法

本研究纳入了 57 例行 RAS 手术的患者,分别采用骨基准标记注册(BFR)或激光表面注册(LSR)。SA 通过进入点误差(EPE)来测量。此外,还评估了 SA 的预测因素(注册误差[RegE]、到注册平面的距离[DTC])和 TE(成像、皮肤到皮肤)。

结果

平均 SA 为 1.0±0.8mm。BFR 通过减少 RegE 和 DTC 来提高 SA。在 LSR 中,EPE 取决于 DTC(面部和前额),DTC≤100mm 时精度最高。基于 CT 的 LSR 比基于 MR 的 LSR 具有更高的 SA。在 BFR 中,TE 受到额外成像的限制。

结论

每种配准技术都抵消了 RAS 的一个承诺。需要新的解决方案来提高 RAS 在神经外科中的接受程度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验