Suppr超能文献

生物组织中模式和形态的力学模型:应力-应变本构方程的作用。

Mechanical Models of Pattern and Form in Biological Tissues: The Role of Stress-Strain Constitutive Equations.

机构信息

School of Mathematics and Statistics, University of St Andrews, St Andrews, 16 9SS, UK.

Fachbereich Mathematik, Technische Universität Darmstadt, Dolivostr. 15, 64293, Darmstadt, Germany.

出版信息

Bull Math Biol. 2021 May 26;83(7):80. doi: 10.1007/s11538-021-00912-5.

Abstract

Mechanical and mechanochemical models of pattern formation in biological tissues have been used to study a variety of biomedical systems, particularly in developmental biology, and describe the physical interactions between cells and their local surroundings. These models in their original form consist of a balance equation for the cell density, a balance equation for the density of the extracellular matrix (ECM), and a force-balance equation describing the mechanical equilibrium of the cell-ECM system. Under the assumption that the cell-ECM system can be regarded as an isotropic linear viscoelastic material, the force-balance equation is often defined using the Kelvin-Voigt model of linear viscoelasticity to represent the stress-strain relation of the ECM. However, due to the multifaceted bio-physical nature of the ECM constituents, there are rheological aspects that cannot be effectively captured by this model and, therefore, depending on the pattern formation process and the type of biological tissue considered, other constitutive models of linear viscoelasticity may be better suited. In this paper, we systematically assess the pattern formation potential of different stress-strain constitutive equations for the ECM within a mechanical model of pattern formation in biological tissues. The results obtained through linear stability analysis and the dispersion relations derived therefrom support the idea that fluid-like constitutive models, such as the Maxwell model and the Jeffrey model, have a pattern formation potential much higher than solid-like models, such as the Kelvin-Voigt model and the standard linear solid model. This is confirmed by the results of numerical simulations, which demonstrate that, all else being equal, spatial patterns emerge in the case where the Maxwell model is used to represent the stress-strain relation of the ECM, while no patterns are observed when the Kelvin-Voigt model is employed. Our findings suggest that further empirical work is required to acquire detailed quantitative information on the mechanical properties of components of the ECM in different biological tissues in order to furnish mechanical and mechanochemical models of pattern formation with stress-strain constitutive equations for the ECM that provide a more faithful representation of the underlying tissue rheology.

摘要

生物组织中形态形成的力学和机械化学模型已被用于研究各种生物医学系统,特别是在发育生物学中,并描述了细胞与其局部环境之间的物理相互作用。这些模型最初由细胞密度的平衡方程、细胞外基质 (ECM) 密度的平衡方程和描述细胞-ECM 系统力学平衡的力平衡方程组成。在假设细胞-ECM 系统可以被视为各向同性线性粘弹性材料的情况下,力平衡方程通常使用 Kelvin-Voigt 线性粘弹性模型来定义,以表示 ECM 的应力-应变关系。然而,由于 ECM 成分的多方面生物物理性质,存在一些无法通过该模型有效捕捉的流变学方面,因此,取决于形态形成过程和所考虑的生物组织类型,其他线性粘弹性本构模型可能更适合。在本文中,我们系统地评估了不同的 ECM 应力-应变本构方程在生物组织形态形成力学模型中的形态形成潜力。通过线性稳定性分析和由此得出的频散关系得到的结果支持这样一种观点,即类似于流体的本构模型,如 Maxwell 模型和 Jeffrey 模型,比类似于固体的模型(如 Kelvin-Voigt 模型和标准线性固体模型)具有更高的形态形成潜力。数值模拟的结果证实了这一点,这些结果表明,在使用 Maxwell 模型来表示 ECM 的应力-应变关系的情况下,所有其他条件相同,空间模式会出现,而在使用 Kelvin-Voigt 模型的情况下,则不会观察到模式。我们的研究结果表明,需要进一步进行实证工作,以获取不同生物组织中 ECM 成分的机械性能的详细定量信息,以便为形态形成的力学和机械化学模型提供 ECM 的应力-应变本构方程,这些方程能够更真实地反映基础组织的流变学特性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce67/8154836/1d33050052bb/11538_2021_912_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验