MBIC, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands.
MBIC, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands.
Neuroimage. 2021 Aug 15;237:118195. doi: 10.1016/j.neuroimage.2021.118195. Epub 2021 May 24.
Cerebral blood volume (CBV) has been shown to be a robust and important physiological parameter for quantitative interpretation of functional (f)MRI, capable of delivering highly localized mapping of neural activity. Indeed, with recent advances in ultra-high-field (≥7T) MRI hardware and associated sequence libraries, it has become possible to capture non-invasive CBV weighted fMRI signals across cortical layers. One of the most widely used approaches to achieve this (in humans) is through vascular-space-occupancy (VASO) fMRI. Unfortunately, the exact contrast mechanisms of layer-dependent VASO fMRI have not been validated for human fMRI and thus interpretation of such data is confounded. Here we validate the signal source of layer-dependent SS-SI VASO fMRI using multi-modal imaging in a rat model in response to neuronal activation (somatosensory cortex) and respiratory challenge (hypercapnia). In particular VASO derived CBV measures are directly compared to concurrent measures of total haemoglobin changes from high resolution intrinsic optical imaging spectroscopy (OIS). Quantified cortical layer profiling is demonstrated to be in agreement between VASO and contrast enhanced fMRI (using monocrystalline iron oxide nanoparticles, MION). Responses show high spatial localisation to layers of cortical processing independent of confounding large draining veins which can hamper BOLD fMRI studies, (depending on slice positioning). Thus, a cross species comparison is enabled using VASO as a common measure. We find increased VASO based CBV reactivity (3.1 ± 1.2 fold increase) in humans compared to rats. Together, our findings confirm that the VASO contrast is indeed a reliable estimate of layer-specific CBV changes. This validation study increases the neuronal interpretability of human layer-dependent VASO fMRI as an appropriate method in neuroscience application studies, in which the presence of large draining intracortical and pial veins limits neuroscientific inference with BOLD fMRI.
脑血容量(CBV)已被证明是功能磁共振成像(fMRI)定量解释的一个强大且重要的生理参数,能够提供高度局部化的神经活动映射。事实上,随着超高场(≥7T)MRI 硬件和相关序列库的最新进展,已经可以在皮质层之间捕获非侵入性的 CBV 加权 fMRI 信号。实现这一目标的最广泛使用的方法之一(在人类中)是通过血管空间占据(VASO) fMRI。不幸的是,人类 fMRI 中尚未验证层依赖 VASO fMRI 的精确对比机制,因此此类数据的解释存在混淆。在这里,我们使用多模态成像在大鼠模型中验证了层依赖 SS-SI VASO fMRI 的信号源,以响应神经元激活(体感皮层)和呼吸挑战(高碳酸血症)。特别是,直接比较了源自 VASO 的 CBV 测量值与来自高分辨率固有光学成像光谱学(OIS)的总血红蛋白变化的并发测量值。证明了量化的皮质层分析在 VASO 和对比增强 fMRI 之间是一致的(使用单晶氧化铁纳米颗粒,MION)。响应显示出与皮质处理层的高空间局部化,而不受可能阻碍 BOLD fMRI 研究的大引流静脉的干扰(取决于切片位置)。因此,可以使用 VASO 作为共同测量来实现跨物种比较。我们发现与大鼠相比,人类基于 VASO 的 CBV 反应性增加(增加 3.1±1.2 倍)。总的来说,我们的研究结果证实了 VASO 对比确实是皮质层特异性 CBV 变化的可靠估计。这项验证研究增加了人类基于 VASO 的层依赖 fMRI 作为神经科学应用研究中一种适当方法的神经元可解释性,在这些研究中,大的引流皮质内和脑皮层静脉限制了 BOLD fMRI 对神经科学的推断。