Section on Functional Imaging Methods, Laboratory of Brain and Cognition, NIMH, NIH, Bethesda, MD, USA.
Maastricht Brain Imaging Center, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; Centre for Advanced Imaging, University of Queensland, Australia.
Neuroimage. 2018 Sep;178:769-779. doi: 10.1016/j.neuroimage.2018.06.025. Epub 2018 Jun 8.
Functional mapping of cerebral blood volume (CBV) changes has the potential to reveal brain activity with high localization specificity at the level of cortical layers and columns. Non-invasive CBV imaging using Vascular Space Occupancy (VASO) at ultra-high magnetic field strengths promises high spatial specificity but poses unique challenges in human applications. As such, 9.4 T B and B inhomogeneities limit efficient blood tagging, while the specific absorption rate (SAR) constraints limit the application of VASO-specific RF pulses. Moreover, short T values at 9.4 T require short readout duration, and long T values at 9.4 T can cause blood-inflow contaminations. In this study, we investigated the applicability of layer-dependent CBV-fMRI at 9.4 T in humans. We addressed the aforementioned challenges by combining multiple technical advancements: temporally alternating pTx B shimming parameters, advanced adiabatic RF-pulses, 3D-EPI signal readout, optimized GRAPPA acquisition and reconstruction, and stability-optimized RF channel combination. We found that a combination of suitable advanced methodology alleviates the challenges and potential artifacts, and that VASO fMRI provides reliable measures of CBV change across cortical layers in humans at 9.4 T. The localization specificity of CBV-fMRI, combined with the high sensitivity of 9.4 T, makes this method an important tool for future studies investigating cortical micro-circuitry in humans.
脑血容量 (CBV) 变化的功能映射具有在皮层层和柱水平上以高定位特异性揭示大脑活动的潜力。使用超高磁场强度的血管空间占用 (VASO) 进行非侵入性 CBV 成像有望具有高空间特异性,但在人体应用中存在独特的挑战。因此,9.4T 的 B 和 B 不均匀性限制了有效的血液标记,而特定吸收率 (SAR) 限制限制了 VASO 特定 RF 脉冲的应用。此外,9.4T 时的短 T 值需要短的读出持续时间,而 9.4T 时的长 T 值会导致血流污染。在这项研究中,我们研究了在人类中应用依赖于层的 9.4T CBV-fMRI 的适用性。我们通过结合多种技术进步来解决上述挑战:时间交替 pTx B 调谐参数、先进的绝热 RF 脉冲、3D-EPI 信号读出、优化的 GRAPPA 采集和重建,以及稳定性优化的 RF 通道组合。我们发现,合适的先进方法的组合减轻了挑战和潜在的伪影,并且 VASO fMRI 在 9.4T 时为人类的皮层层之间的 CBV 变化提供了可靠的测量。CBV-fMRI 的定位特异性,结合 9.4T 的高灵敏度,使该方法成为未来研究人类皮层微电路的重要工具。