Suppr超能文献

超高分辨率 fMRI 血流容积成像和血氧水平依赖 fMRI 在 9.4T 人体中的应用:性能与挑战。

Ultra-high resolution blood volume fMRI and BOLD fMRI in humans at 9.4 T: Capabilities and challenges.

机构信息

Section on Functional Imaging Methods, Laboratory of Brain and Cognition, NIMH, NIH, Bethesda, MD, USA.

Maastricht Brain Imaging Center, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; Centre for Advanced Imaging, University of Queensland, Australia.

出版信息

Neuroimage. 2018 Sep;178:769-779. doi: 10.1016/j.neuroimage.2018.06.025. Epub 2018 Jun 8.

Abstract

Functional mapping of cerebral blood volume (CBV) changes has the potential to reveal brain activity with high localization specificity at the level of cortical layers and columns. Non-invasive CBV imaging using Vascular Space Occupancy (VASO) at ultra-high magnetic field strengths promises high spatial specificity but poses unique challenges in human applications. As such, 9.4 T B and B inhomogeneities limit efficient blood tagging, while the specific absorption rate (SAR) constraints limit the application of VASO-specific RF pulses. Moreover, short T values at 9.4 T require short readout duration, and long T values at 9.4 T can cause blood-inflow contaminations. In this study, we investigated the applicability of layer-dependent CBV-fMRI at 9.4 T in humans. We addressed the aforementioned challenges by combining multiple technical advancements: temporally alternating pTx B shimming parameters, advanced adiabatic RF-pulses, 3D-EPI signal readout, optimized GRAPPA acquisition and reconstruction, and stability-optimized RF channel combination. We found that a combination of suitable advanced methodology alleviates the challenges and potential artifacts, and that VASO fMRI provides reliable measures of CBV change across cortical layers in humans at 9.4 T. The localization specificity of CBV-fMRI, combined with the high sensitivity of 9.4 T, makes this method an important tool for future studies investigating cortical micro-circuitry in humans.

摘要

脑血容量 (CBV) 变化的功能映射具有在皮层层和柱水平上以高定位特异性揭示大脑活动的潜力。使用超高磁场强度的血管空间占用 (VASO) 进行非侵入性 CBV 成像有望具有高空间特异性,但在人体应用中存在独特的挑战。因此,9.4T 的 B 和 B 不均匀性限制了有效的血液标记,而特定吸收率 (SAR) 限制限制了 VASO 特定 RF 脉冲的应用。此外,9.4T 时的短 T 值需要短的读出持续时间,而 9.4T 时的长 T 值会导致血流污染。在这项研究中,我们研究了在人类中应用依赖于层的 9.4T CBV-fMRI 的适用性。我们通过结合多种技术进步来解决上述挑战:时间交替 pTx B 调谐参数、先进的绝热 RF 脉冲、3D-EPI 信号读出、优化的 GRAPPA 采集和重建,以及稳定性优化的 RF 通道组合。我们发现,合适的先进方法的组合减轻了挑战和潜在的伪影,并且 VASO fMRI 在 9.4T 时为人类的皮层层之间的 CBV 变化提供了可靠的测量。CBV-fMRI 的定位特异性,结合 9.4T 的高灵敏度,使该方法成为未来研究人类皮层微电路的重要工具。

相似文献

4
Validating layer-specific VASO across species.验证物种特异性的血管空间分布成像(VASO)。
Neuroimage. 2021 Aug 15;237:118195. doi: 10.1016/j.neuroimage.2021.118195. Epub 2021 May 24.

引用本文的文献

4
Contextual responses drive a unique laminar signature in human V1.情境反应在人类初级视觉皮层中驱动独特的分层特征。
iScience. 2025 Jun 19;28(7):112967. doi: 10.1016/j.isci.2025.112967. eCollection 2025 Jul 18.
7
Exploring methodological frontiers in laminar fMRI.探索层流功能磁共振成像的方法前沿。
Psychoradiology. 2024 Nov 22;4:kkae027. doi: 10.1093/psyrad/kkae027. eCollection 2024.
8
High Spatiotemporal Resolution Radial Encoding Single-Vessel fMRI.高时空分辨率径向编码单血管 fMRI。
Adv Sci (Weinh). 2024 Jul;11(26):e2309218. doi: 10.1002/advs.202309218. Epub 2024 Apr 30.

本文引用的文献

2
Laminar fMRI and computational theories of brain function.层流 fMRI 与脑功能的计算理论。
Neuroimage. 2019 Aug 15;197:699-706. doi: 10.1016/j.neuroimage.2017.11.001. Epub 2017 Nov 2.
3
Circuit changes in motor cortex during motor skill learning.运动技能学习过程中运动皮层的回路变化。
Neuroscience. 2018 Jan 1;368:283-297. doi: 10.1016/j.neuroscience.2017.09.010. Epub 2017 Sep 14.
4
Non-BOLD contrast for laminar fMRI in humans: CBF, CBV, and CMR.人类层流 fMRI 的非 BOLD 对比:CBF、CBV 和 CMR。
Neuroimage. 2019 Aug 15;197:742-760. doi: 10.1016/j.neuroimage.2017.07.041. Epub 2017 Jul 20.
5
Laminar fMRI: Applications for cognitive neuroscience.层流 fMRI:认知神经科学的应用。
Neuroimage. 2019 Aug 15;197:785-791. doi: 10.1016/j.neuroimage.2017.07.004. Epub 2017 Jul 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验