Suppr超能文献

距离LSTM:用于肺癌检测的长短期记忆模型中的时间距离门控

Distanced LSTM: Time-Distanced Gates in Long Short-Term Memory Models for Lung Cancer Detection.

作者信息

Gao Riqiang, Huo Yuankai, Bao Shunxing, Tang Yucheng, Antic Sanja L, Epstein Emily S, Balar Aneri B, Deppen Steve, Paulson Alexis B, Sandler Kim L, Massion Pierre P, Landman Bennett A

机构信息

Vanderbilt University, Nashville, TN 37235, USA.

Vanderbilt University Medical Center, Nashville, TN 37235, USA.

出版信息

Mach Learn Med Imaging. 2019 Oct;11861:310-318. doi: 10.1007/978-3-030-32692-0_36. Epub 2019 Oct 10.

Abstract

The field of lung nodule detection and cancer prediction has been rapidly developing with the support of large public data archives. Previous studies have largely focused cross-sectional (single) CT data. Herein, we consider longitudinal data. The Long Short-Term Memory (LSTM) model addresses learning with regularly spaced time points (i.e., equal temporal intervals). However, clinical imaging follows patient needs with often heterogeneous, irregular acquisitions. To model both regular and irregular longitudinal samples, we generalize the LSTM model with the Distanced LSTM (DLSTM) for temporally varied acquisitions. The DLSTM includes a Temporal Emphasis Model (TEM) that enables learning across regularly and irregularly sampled intervals. Briefly, (1) the temporal intervals between longitudinal scans are modeled explicitly, (2) temporally adjustable forget and input gates are introduced for irregular temporal sampling; and (3) the latest longitudinal scan has an additional emphasis term. We evaluate the DLSTM framework in three datasets including simulated data, 1794 National Lung Screening Trial (NLST) scans, and 1420 clinically acquired data with heterogeneous and irregular temporal accession. The experiments on the first two datasets demonstrate that our method achieves competitive performance on both simulated and regularly sampled datasets (e.g. improve LSTM from 0.6785 to 0.7085 on F1 score in NLST). In external validation of clinically and irregularly acquired data, the benchmarks achieved 0.8350 (CNN feature) and 0.8380 (LSTM) on area under the ROC curve (AUC) score, while the proposed DLSTM achieves 0.8905.

摘要

在大型公共数据档案库的支持下,肺结节检测与癌症预测领域发展迅速。以往的研究主要集中在横断面(单期)CT数据上。在此,我们考虑纵向数据。长短期记忆(LSTM)模型适用于对具有规则间隔时间点(即等时间间隔)的数据进行学习。然而,临床成像往往根据患者需求进行,采集的数据通常具有异质性且不规则。为了对规则和不规则的纵向样本进行建模,我们使用距离长短期记忆(DLSTM)模型对LSTM模型进行了推广,以处理时间上变化的采集数据。DLSTM包括一个时间加权模型(TEM),该模型能够跨规则和不规则采样间隔进行学习。简而言之,(1)明确对纵向扫描之间的时间间隔进行建模;(2)针对不规则时间采样引入了时间可调的遗忘门和输入门;(3)最新的纵向扫描有一个额外的加权项。我们在三个数据集上评估了DLSTM框架,包括模拟数据、1794例国家肺癌筛查试验(NLST)扫描数据以及1420例具有异质性和不规则时间采集的临床数据。在前两个数据集上的实验表明,我们的方法在模拟数据集和规则采样数据集上均取得了有竞争力的性能(例如,在NLST数据集中,F1分数从0.6785提高到0.7085)。在对临床和不规则采集数据的外部验证中,基准模型在ROC曲线下面积(AUC)分数上分别达到了0.8350(CNN特征)和0.8380(LSTM),而所提出的DLSTM模型达到了0.8905。

相似文献

2
Time-distanced gates in long short-term memory networks.长短期记忆网络中的时间距离门控
Med Image Anal. 2020 Oct;65:101785. doi: 10.1016/j.media.2020.101785. Epub 2020 Jul 18.
6
Multi-channel fusion LSTM for medical event prediction using EHRs.基于 EHR 的多通道融合 LSTM 进行医疗事件预测。
J Biomed Inform. 2022 Mar;127:104011. doi: 10.1016/j.jbi.2022.104011. Epub 2022 Feb 15.

引用本文的文献

6
Deep Learning for Medical Image-Based Cancer Diagnosis.基于医学图像的癌症诊断的深度学习
Cancers (Basel). 2023 Jul 13;15(14):3608. doi: 10.3390/cancers15143608.
8
Self-supervised learning of neighborhood embedding for longitudinal MRI.基于邻域嵌入的纵向 MRI 自监督学习。
Med Image Anal. 2022 Nov;82:102571. doi: 10.1016/j.media.2022.102571. Epub 2022 Aug 27.

本文引用的文献

1
Deep Learning Predicts Lung Cancer Treatment Response from Serial Medical Imaging.深度学习从连续医学成像预测肺癌治疗反应。
Clin Cancer Res. 2019 Jun 1;25(11):3266-3275. doi: 10.1158/1078-0432.CCR-18-2495. Epub 2019 Apr 22.
2
Evaluate the Malignancy of Pulmonary Nodules Using the 3-D Deep Leaky Noisy-OR Network.利用三维深度渗漏噪声 OR 网络评估肺结节的恶性程度。
IEEE Trans Neural Netw Learn Syst. 2019 Nov;30(11):3484-3495. doi: 10.1109/TNNLS.2019.2892409. Epub 2019 Feb 14.
3
The National Lung Screening Trial: overview and study design.国家肺癌筛查试验:概述与研究设计。
Radiology. 2011 Jan;258(1):243-53. doi: 10.1148/radiol.10091808. Epub 2010 Nov 2.
6
Long short-term memory.长短期记忆
Neural Comput. 1997 Nov 15;9(8):1735-80. doi: 10.1162/neco.1997.9.8.1735.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验