Suppr超能文献

基于纵向计算机断层扫描的肺癌诊断中的时间距离视觉变压器

Time-distance vision transformers in lung cancer diagnosis from longitudinal computed tomography.

作者信息

Li Thomas Z, Xu Kaiwen, Gao Riqiang, Tang Yucheng, Lasko Thomas A, Maldonado Fabien, Sandler Kim L, Landman Bennett A

机构信息

Biomedical Engineering, Vanderbilt University, Nashville, TN, USA 37235.

School of Medicine, Vanderbilt University, Nashville, TN, US 37235.

出版信息

Proc SPIE Int Soc Opt Eng. 2023 Feb;12464. doi: 10.1117/12.2653911. Epub 2023 Apr 3.

Abstract

Features learned from single radiologic images are unable to provide information about whether and how much a lesion may be changing over time. Time-dependent features computed from repeated images can capture those changes and help identify malignant lesions by their temporal behavior. However, longitudinal medical imaging presents the unique challenge of sparse, irregular time intervals in data acquisition. While self-attention has been shown to be a versatile and efficient learning mechanism for time series and natural images, its potential for interpreting temporal distance between sparse, irregularly sampled spatial features has not been explored. In this work, we propose two interpretations of a time-distance vision transformer (ViT) by using (1) vector embeddings of continuous time and (2) a temporal emphasis model to scale self-attention weights. The two algorithms are evaluated based on benign versus malignant lung cancer discrimination of synthetic pulmonary nodules and lung screening computed tomography studies from the National Lung Screening Trial (NLST). Experiments evaluating the time-distance ViTs on synthetic nodules show a fundamental improvement in classifying irregularly sampled longitudinal images when compared to standard ViTs. In cross-validation on screening chest CTs from the NLST, our methods (0.785 and 0.786 AUC respectively) significantly outperform a cross-sectional approach (0.734 AUC) and match the discriminative performance of the leading longitudinal medical imaging algorithm (0.779 AUC) on benign versus malignant classification. This work represents the first self-attention-based framework for classifying longitudinal medical images. Our code is available at https://github.com/tom1193/time-distance-transformer.

摘要

从单一放射影像中学习到的特征无法提供有关病变是否以及随时间变化程度的信息。从重复影像中计算得出的时间相关特征可以捕捉这些变化,并通过其时间行为帮助识别恶性病变。然而,纵向医学影像在数据采集中存在稀疏、不规则时间间隔这一独特挑战。虽然自注意力已被证明是用于时间序列和自然图像的通用且高效的学习机制,但其在解释稀疏、不规则采样的空间特征之间的时间距离方面的潜力尚未得到探索。在这项工作中,我们通过使用(1)连续时间的向量嵌入和(2)一个时间强调模型来缩放自注意力权重,提出了时间距离视觉Transformer(ViT)的两种解释。基于合成肺结节的良性与恶性肺癌鉴别以及来自国家肺癌筛查试验(NLST)的肺部筛查计算机断层扫描研究,对这两种算法进行了评估。对合成结节评估时间距离ViT的实验表明,与标准ViT相比,在对不规则采样的纵向图像进行分类时,有了根本性的改进。在对NLST的筛查胸部CT进行交叉验证时,我们的方法(分别为0.785和0.786的AUC)显著优于横断面方法(0.734的AUC),并且在良性与恶性分类方面与领先的纵向医学影像算法(0.779的AUC)的判别性能相当。这项工作代表了第一个基于自注意力的纵向医学影像分类框架。我们的代码可在https://github.com/tom1193/time-distance-transformer获取。

相似文献

1
Time-distance vision transformers in lung cancer diagnosis from longitudinal computed tomography.
Proc SPIE Int Soc Opt Eng. 2023 Feb;12464. doi: 10.1117/12.2653911. Epub 2023 Apr 3.
2
Time-distanced gates in long short-term memory networks.
Med Image Anal. 2020 Oct;65:101785. doi: 10.1016/j.media.2020.101785. Epub 2020 Jul 18.
3
Longitudinal Multimodal Transformer Integrating Imaging and Latent Clinical Signatures From Routine EHRs for Pulmonary Nodule Classification.
Med Image Comput Comput Assist Interv. 2023 Oct;14221:649-659. doi: 10.1007/978-3-031-43895-0_61. Epub 2023 Oct 1.
5
FibroVit-Vision transformer-based framework for detection and classification of pulmonary fibrosis from chest CT images.
Front Med (Lausanne). 2023 Nov 8;10:1282200. doi: 10.3389/fmed.2023.1282200. eCollection 2023.
6
A deep learning-based framework (Co-ReTr) for auto-segmentation of non-small cell-lung cancer in computed tomography images.
J Appl Clin Med Phys. 2024 Mar;25(3):e14297. doi: 10.1002/acm2.14297. Epub 2024 Feb 19.
7
Classification for thyroid nodule using ViT with contrastive learning in ultrasound images.
Comput Biol Med. 2023 Jan;152:106444. doi: 10.1016/j.compbiomed.2022.106444. Epub 2022 Dec 16.
8
Improving diagnosis and prognosis of lung cancer using vision transformers: a scoping review.
BMC Med Imaging. 2023 Sep 15;23(1):129. doi: 10.1186/s12880-023-01098-z.
9
Distilling Knowledge From an Ensemble of Vision Transformers for Improved Classification of Breast Ultrasound.
Acad Radiol. 2024 Jan;31(1):104-120. doi: 10.1016/j.acra.2023.08.006. Epub 2023 Sep 2.
10
Res-trans networks for lung nodule classification.
Int J Comput Assist Radiol Surg. 2022 Jun;17(6):1059-1068. doi: 10.1007/s11548-022-02576-5. Epub 2022 Mar 15.

引用本文的文献

本文引用的文献

1
A Survey of Visual Transformers.
IEEE Trans Neural Netw Learn Syst. 2024 Jun;35(6):7478-7498. doi: 10.1109/TNNLS.2022.3227717. Epub 2024 Jun 3.
2
VidTr: Video Transformer Without Convolutions.
Proc IEEE Int Conf Comput Vis. 2021 Oct;2021:13557-13567. doi: 10.1109/iccv48922.2021.01332.
3
Patient Adherence to Screening for Lung Cancer in the US: A Systematic Review and Meta-analysis.
JAMA Netw Open. 2020 Nov 2;3(11):e2025102. doi: 10.1001/jamanetworkopen.2020.25102.
4
Volume and Mass Doubling Time of Lung Adenocarcinoma according to WHO Histologic Classification.
Korean J Radiol. 2021 Mar;22(3):464-475. doi: 10.3348/kjr.2020.0592. Epub 2020 Oct 30.
5
Time-distanced gates in long short-term memory networks.
Med Image Anal. 2020 Oct;65:101785. doi: 10.1016/j.media.2020.101785. Epub 2020 Jul 18.
7
Volume Doubling Times of Lung Adenocarcinomas: Correlation with Predominant Histologic Subtypes and Prognosis.
Radiology. 2020 Jun;295(3):703-712. doi: 10.1148/radiol.2020191835. Epub 2020 Mar 31.
8
Overview of clinical prediction models.
Ann Transl Med. 2020 Feb;8(4):71. doi: 10.21037/atm.2019.11.121.
9
End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography.
Nat Med. 2019 Jun;25(6):954-961. doi: 10.1038/s41591-019-0447-x. Epub 2019 May 20.
10
Evaluate the Malignancy of Pulmonary Nodules Using the 3-D Deep Leaky Noisy-OR Network.
IEEE Trans Neural Netw Learn Syst. 2019 Nov;30(11):3484-3495. doi: 10.1109/TNNLS.2019.2892409. Epub 2019 Feb 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验