Xu Nannan, Yang Guang, Ming Linlin, Dai Jiefei, Zhu Kun
Qiqihar First Hospital/Qiqihar Hospital Affiliated to Southern Medical University, Clinical Laboratory, Qiqihar, China.
Qiqihar First Hospital/Qiqihar Hospital Affiliated to Southern Medical University, Oral and Maxillofacial Surgery, Qiqihar, China.
Front Med (Lausanne). 2025 Aug 8;12:1620257. doi: 10.3389/fmed.2025.1620257. eCollection 2025.
Accurate forecasting of lung cancer incidence is crucial for early prevention, effective medical resource allocation, and evidence-based policymaking.
This study proposes a novel deep learning framework-PSOA-LSTM-that integrates Particle Swarm Optimization (PSO) with an attention-based Long Short-Term Memory (LSTM) network to enhance the precision of lung cancer incidence prediction.
Using the Global Burden of Disease 2019 (GBD 2019) dataset, the model predicts age- and gender-specific lung cancer incidence trends for the next 5 years. The proposed model was compared against traditional models including ARIMA, standard LSTM, Support Vector Regression (SVR), and Random Forest (RF).
The PSOA-LSTM model achieved superior performance across five key evaluation metrics: mean squared error (MSE) = 0.023, coefficient of determination ( ) = 0.97, mean absolute error (MAE) = 0.152, normalized root mean squared error (NRMSE) = 0.025, and mean absolute percentage error (MAPE) = 0.38%. Visualization results across 12 age groups and both genders further validated the model's ability to capture temporal trends and reduce prediction error, demonstrating enhanced generalization and robustness.
The proposed PSOA-LSTM model outperforms benchmark models in predicting lung cancer incidence across demographic segments, offering a reliable decision-support tool for public health surveillance, early warning systems, and health policy formulation.
准确预测肺癌发病率对于早期预防、有效的医疗资源分配和基于证据的政策制定至关重要。
本研究提出了一种新颖的深度学习框架PSOA-LSTM,该框架将粒子群优化(PSO)与基于注意力的长短期记忆(LSTM)网络相结合,以提高肺癌发病率预测的精度。
使用全球疾病负担2019(GBD 2019)数据集,该模型预测未来5年特定年龄和性别的肺癌发病率趋势。将所提出的模型与包括ARIMA、标准LSTM、支持向量回归(SVR)和随机森林(RF)在内的传统模型进行比较。
PSOA-LSTM模型在五个关键评估指标上表现出色:均方误差(MSE)=0.023,决定系数( )=0.97,平均绝对误差(MAE)=0.152,归一化均方根误差(NRMSE)=0.025,平均绝对百分比误差(MAPE)=0.38%。对12个年龄组和男女两性的可视化结果进一步验证了该模型捕捉时间趋势和减少预测误差的能力,表明其具有更强的泛化能力和稳健性。
所提出的PSOA-LSTM模型在预测不同人口统计群体的肺癌发病率方面优于基准模型,为公共卫生监测、预警系统和卫生政策制定提供了可靠的决策支持工具。