Jiang Yuming, Zhang Zhicheng, Yuan Qingyu, Wang Wei, Wang Hongyu, Li Tuanjie, Huang Weicai, Xie Jingjing, Chen Chuanli, Sun Zepang, Yu Jiang, Xu Yikai, Poultsides George A, Xing Lei, Zhou Zhiwei, Li Guoxin, Li Ruijiang
Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China; Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA.
Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA; Xiaohe Healthcare, ByteDance, Guangzhou, China.
Lancet Digit Health. 2022 May;4(5):e340-e350. doi: 10.1016/S2589-7500(22)00040-1.
Peritoneal recurrence is the predominant pattern of relapse after curative-intent surgery for gastric cancer and portends a dismal prognosis. Accurate individualised prediction of peritoneal recurrence is crucial to identify patients who might benefit from intensive treatment. We aimed to develop predictive models for peritoneal recurrence and prognosis in gastric cancer.
In this retrospective multi-institution study of 2320 patients, we developed a multitask deep learning model for the simultaneous prediction of peritoneal recurrence and disease-free survival using preoperative CT images. Patients in the training cohort (n=510) and the internal validation cohort (n=767) were recruited from Southern Medical University, Guangzhou, China. Patients in the external validation cohort (n=1043) were recruited from Sun Yat-sen University Cancer Center, Guangzhou, China. We evaluated the prognostic accuracy of the model as well as its association with chemotherapy response. Furthermore, we assessed whether the model could improve the ability of clinicians to predict peritoneal recurrence.
The deep learning model had a consistently high accuracy in predicting peritoneal recurrence in the training cohort (area under the receiver operating characteristic curve [AUC] 0·857; 95% CI 0·826-0·889), internal validation cohort (0·856; 0·829-0·882), and external validation cohort (0·843; 0·819-0·866). When informed by the artificial intelligence (AI) model, the sensitivity and inter-rater agreement of oncologists for predicting peritoneal recurrence was improved. The model was able to predict disease-free survival in the training cohort (C-index 0·654; 95% CI 0·616-0·691), internal validation cohort (0·668; 0·643-0·693), and external validation cohort (0·610; 0·583-0·636). In multivariable analysis, the model predicted peritoneal recurrence and disease-free survival independently of clinicopathological variables (p<0·0001 for all). For patients with a predicted high risk of peritoneal recurrence and low survival, adjuvant chemotherapy was associated with improved disease-free survival in both stage II disease (hazard ratio [HR] 0·543 [95% CI 0·362-0·815]; p=0·003) and stage III disease (0·531 [0·432-0·652]; p<0·0001). By contrast, chemotherapy had no impact on disease-free survival for patients with a predicted low risk of peritoneal recurrence and high survival. For the remaining patients, the benefit of chemotherapy depended on stage: only those with stage III disease derived benefit from chemotherapy (HR 0·637 [95% CI 0·484-0·838]; p=0·001).
The deep learning model could allow accurate prediction of peritoneal recurrence and survival in patients with gastric cancer. Prospective studies are required to test the clinical utility of this model in guiding personalised treatment in combination with clinicopathological criteria.
None.
腹膜复发是胃癌根治性手术后复发的主要模式,预后较差。准确个体化预测腹膜复发对于识别可能从强化治疗中获益的患者至关重要。我们旨在开发胃癌腹膜复发和预后的预测模型。
在这项对2320例患者的回顾性多机构研究中,我们使用术前CT图像开发了一种多任务深度学习模型,用于同时预测腹膜复发和无病生存期。训练队列(n = 510)和内部验证队列(n = 767)的患者来自中国广州南方医科大学。外部验证队列(n = 1043)的患者来自中国广州中山大学肿瘤防治中心。我们评估了该模型的预后准确性及其与化疗反应的关联。此外,我们评估了该模型是否可以提高临床医生预测腹膜复发的能力。
深度学习模型在预测训练队列(受试者操作特征曲线下面积[AUC] 0·857;95% CI 0·826 - 0·889)、内部验证队列(0·856;0·829 - 0·882)和外部验证队列(0·843;0·819 - 0·866)中的腹膜复发方面始终具有较高的准确性。在人工智能(AI)模型的指导下,肿瘤学家预测腹膜复发的敏感性和评分者间一致性得到了提高。该模型能够预测训练队列(C指数0·654;95% CI 0·616 - 0·691)、内部验证队列(0·668;0·643 - 0·693)和外部验证队列(0·610;0·583 - 0·636)中的无病生存期。在多变量分析中,该模型独立于临床病理变量预测腹膜复发和无病生存期(所有p < 0·0001)。对于预测腹膜复发风险高且生存期短的患者,辅助化疗在II期疾病(风险比[HR] 0·543 [95% CI 0·362 - 0·815];p = 0·003)和III期疾病(0·531 [0·432 - 0·652];p < 0·0001)中均与无病生存期改善相关。相比之下,化疗对预测腹膜复发风险低且生存期长的患者的无病生存期没有影响。对于其余患者,化疗的益处取决于分期:只有III期疾病患者从化疗中获益(HR 0·637 [95% CI 0·484 - 0·838];p = 0·001)。
深度学习模型可以准确预测胃癌患者的腹膜复发和生存期。需要进行前瞻性研究来测试该模型在结合临床病理标准指导个体化治疗中的临床实用性。
无。