Suppr超能文献

在飞行蝙蝠的海马体中对非常大的环境进行多尺度表示。

Multiscale representation of very large environments in the hippocampus of flying bats.

机构信息

Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.

Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, CA 92093, USA.

出版信息

Science. 2021 May 28;372(6545). doi: 10.1126/science.abg4020.

Abstract

Hippocampal place cells encode the animal's location. Place cells were traditionally studied in small environments, and nothing is known about large ethologically relevant spatial scales. We wirelessly recorded from hippocampal dorsal CA1 neurons of wild-born bats flying in a long tunnel (200 meters). The size of place fields ranged from 0.6 to 32 meters. Individual place cells exhibited multiple fields and a multiscale representation: Place fields of the same neuron differed up to 20-fold in size. This multiscale coding was observed from the first day of exposure to the environment, and also in laboratory-born bats that never experienced large environments. Theoretical decoding analysis showed that the multiscale code allows representation of very large environments with much higher precision than that of other codes. Together, by increasing the spatial scale, we discovered a neural code that is radically different from classical place codes.

摘要

海马体位置细胞编码动物的位置。传统上,位置细胞在小环境中进行研究,而对于大的、与行为相关的空间尺度,我们一无所知。我们在一个长隧道(200 米)中对野生蝙蝠的海马体背侧 CA1 神经元进行无线记录。位置区域的大小从 0.6 米到 32 米不等。单个位置细胞表现出多个区域和多尺度的表示:同一个神经元的位置区域大小差异可达 20 倍。这种多尺度编码从接触环境的第一天就可以观察到,在从未经历过大型环境的实验室出生的蝙蝠中也可以观察到。理论解码分析表明,多尺度编码可以用比其他编码更高的精度来表示非常大的环境。总的来说,通过增加空间尺度,我们发现了一种与经典位置编码截然不同的神经编码。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验