Suppr超能文献

海马多细胞聚集体的紧急结构和功能特性。

Emergent structural and functional properties of hippocampal multi-cellular aggregates.

作者信息

Acero Victor P, Das Suradip, Rivellini Olivia, Purvis Erin M, Adewole Dayo O, Cullen Daniel Kacy

机构信息

Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States.

Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States.

出版信息

Front Neurosci. 2023 Jun 15;17:1171115. doi: 10.3389/fnins.2023.1171115. eCollection 2023.

Abstract

Hippocampal neural networks are distinctly capable of integrating multi-modal sensory inputs to drive memory formation. Neuroscientific investigations using simplified models have greatly relied on planar (2D) neuronal cultures made from dissociated tissue. While these models have served as simple, cost-effective, and high-throughput tools for examining various morphological and electrophysiological characteristics of hippocampal networks, 2D cultures fail to reconstitute critical elements of the brain microenvironment that may be necessary for the emergence of sophisticated integrative network properties. To address this, we utilized a forced aggregation technique to generate high-density (>100,000 cells/mm) multi-cellular three-dimensional aggregates using rodent embryonic hippocampal tissue. We contrasted the emergent structural and functional properties of aggregated (3D) and dissociated (2D) cultures over 28 days (DIV). Hippocampal aggregates displayed robust axonal fasciculation across large distances and significant neuronal polarization, i.e., spatial segregation of dendrites and axons, at earlier time points compared to dissociated cultures. Moreover, we found that astrocytes in aggregate cultures self-organized into non-overlapping quasi-domains and developed highly stellate morphologies resembling astrocyte structures . We maintained cultures on multi-electrode arrays (MEAs) to assess spontaneous electrophysiological activity for up to 28 DIV. We found that 3D networks of aggregated cultures developed highly synchronized networks and with high burstiness by 28 DIV. We also demonstrated that dual-aggregate networks became active by 7 DIV, in contrast to single-aggregate networks which became active and developed synchronous bursting activity with repeating motifs by 14 DIV. Taken together, our findings demonstrate that the high-density, multi-cellular, 3D microenvironment of hippocampal aggregates supports the recapitulation of emergent biofidelic morphological and functional properties. Our findings suggest that neural aggregates may be used as segregated, modular building blocks for the development of complex, multi-nodal neural network topologies.

摘要

海马神经网络显然能够整合多模态感觉输入以驱动记忆形成。使用简化模型的神经科学研究在很大程度上依赖于由解离组织制成的平面(二维)神经元培养物。虽然这些模型已成为用于检查海马网络各种形态和电生理特征的简单、经济高效且高通量的工具,但二维培养物无法重建大脑微环境的关键要素,而这些要素可能是复杂整合网络特性出现所必需的。为了解决这个问题,我们利用一种强制聚集技术,使用啮齿动物胚胎海马组织生成高密度(>100,000个细胞/mm)的多细胞三维聚集体。我们对比了聚集(三维)培养物和解离(二维)培养物在28天(培养天数)内出现的结构和功能特性。与解离培养物相比,海马聚集体在更早的时间点就显示出跨远距离的强大轴突成束以及显著的神经元极化,即树突和轴突的空间分离。此外,我们发现聚集体培养物中的星形胶质细胞自组织成不重叠的准区域,并发展出类似于星形胶质细胞结构的高度星状形态。我们将培养物维持在多电极阵列(MEA)上,以评估长达28天培养天数的自发电生理活动。我们发现,到28天培养天数时,聚集培养物的三维网络发展出高度同步的网络且具有高爆发性。我们还证明,双聚集体网络在7天培养天数时开始活跃,而单聚集体网络在14天培养天数时才开始活跃并发展出具有重复模式的同步爆发活动。综上所述,我们的研究结果表明,海马聚集体的高密度、多细胞三维微环境支持重现生物逼真的形态和功能特性。我们的研究结果表明,神经聚集体可用作隔离的模块化构建块,用于开发复杂的多节点神经网络拓扑结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7511/10311220/a34f7d281d81/fnins-17-1171115-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验