Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK.
Translational Imaging Group, Centre for Medical Image Computing, University College London , London, UK.
Neuroradiology. 2021 Dec;63(12):2047-2056. doi: 10.1007/s00234-021-02719-6. Epub 2021 May 28.
Surveillance of patients with high-grade glioma (HGG) and identification of disease progression remain a major challenge in neurooncology. This study aimed to develop a support vector machine (SVM) classifier, employing combined longitudinal structural and perfusion MRI studies, to classify between stable disease, pseudoprogression and progressive disease (3-class problem).
Study participants were separated into two groups: group I (total cohort: 64 patients) with a single DSC time point and group II (19 patients) with longitudinal DSC time points (2-3). We retrospectively analysed 269 structural MRI and 92 dynamic susceptibility contrast perfusion (DSC) MRI scans. The SVM classifier was trained using all available MRI studies for each group. Classification accuracy was assessed for different feature dataset and time point combinations and compared to radiologists' classifications.
SVM classification based on combined perfusion and structural features outperformed radiologists' classification across all groups. For the identification of progressive disease, use of combined features and longitudinal DSC time points improved classification performance (lowest error rate 1.6%). Optimal performance was observed in group II (multiple time points) with SVM sensitivity/specificity/accuracy of 100/91.67/94.7% (first time point analysis) and 85.71/100/94.7% (longitudinal analysis), compared to 60/78/68% and 70/90/84.2% for the respective radiologist classifications. In group I (single time point), the SVM classifier also outperformed radiologists' classifications with sensitivity/specificity/accuracy of 86.49/75.00/81.53% (SVM) compared to 75.7/68.9/73.84% (radiologists).
Our results indicate that utilisation of a machine learning (SVM) classifier based on analysis of longitudinal perfusion time points and combined structural and perfusion features significantly enhances classification outcome (p value= 0.0001).
对高级别神经胶质瘤(HGG)患者进行监测并识别疾病进展仍然是神经肿瘤学中的一大挑战。本研究旨在开发一种支持向量机(SVM)分类器,通过联合纵向结构和灌注 MRI 研究来对稳定疾病、假性进展和进展性疾病(3 类问题)进行分类。
研究参与者被分为两组:I 组(总队列:64 例患者)只有一个 DSC 时间点,II 组(19 例患者)有纵向 DSC 时间点(2-3 个)。我们回顾性分析了 269 例结构性 MRI 和 92 例动态磁敏感对比灌注(DSC)MRI 扫描。使用每个组的所有可用 MRI 研究对 SVM 分类器进行训练。评估了不同特征数据集和时间点组合的分类准确性,并与放射科医生的分类进行了比较。
基于联合灌注和结构特征的 SVM 分类在所有组中均优于放射科医生的分类。对于进展性疾病的识别,使用联合特征和纵向 DSC 时间点可提高分类性能(最低错误率为 1.6%)。在 II 组(多个时间点)中观察到最佳性能,SVM 的敏感性/特异性/准确性为 100/91.67/94.7%(第一次时间点分析)和 85.71/100/94.7%(纵向分析),而相应的放射科医生分类为 60/78/68%和 70/90/84.2%。在 I 组(单个时间点)中,SVM 分类器的敏感性/特异性/准确性也优于放射科医生的分类,分别为 86.49/75.00/81.53%(SVM)和 75.7/68.9/73.84%(放射科医生)。
我们的结果表明,使用基于纵向灌注时间点分析和联合结构和灌注特征的机器学习(SVM)分类器可显著提高分类效果(p 值=0.0001)。