Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Science, N-1432, Ås, Norway.
Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Science, N-1432, Ås, Norway.
Carbohydr Res. 2021 Jul;505:108350. doi: 10.1016/j.carres.2021.108350. Epub 2021 May 18.
Lytic polysaccharide monooxygenases (LPMOs) catalyze the oxidative cleavage of glycosidic bonds in recalcitrant polysaccharides such as chitin and cellulose and their discovery has revolutionized our understanding of enzymatic biomass conversion. The discovery of LPMOs raises interesting new questions regarding the roles of other oxidoreductases and abiotic redox processes in biomass conversion. LPMOs need reducing power and an oxygen co-substrate and biomass degrading ecosystems contain a multitude of redox enzymes that affect the availability of both. For example, biomass degrading fungi produce multiple sugar oxidoreductases whose biological functions so far have remained somewhat enigmatic. It is now conceivable that these redox enzymes, in particular HO-producing sugar oxidases, could play a role in fueling and controlling LPMO reactions. Here, we shortly review contemporary issues in the LPMO field, paying particular attention to the possible roles of sugar oxidoreductases.
溶细胞多糖单加氧酶(LPMOs)能够催化甲壳素和纤维素等难降解多糖中糖苷键的氧化断裂,其发现彻底改变了我们对酶促生物质转化的认识。LPMOs 的发现提出了一些有趣的新问题,涉及其他氧化还原酶和非生物氧化还原过程在生物质转化中的作用。LPMOs 需要还原力和氧气共底物,而生物质降解生态系统中含有多种影响两者可用性的氧化还原酶。例如,生物质降解真菌产生多种糖氧化还原酶,其生物学功能迄今仍有些神秘。现在可以想象,这些氧化还原酶,特别是产生 HO 的糖氧化酶,可能在为 LPMO 反应提供动力和控制方面发挥作用。在这里,我们简要回顾了 LPMO 领域的当前问题,特别关注糖氧化还原酶的可能作用。