Suppr超能文献

采用纳米笼状级联酶体系构建具有空间限域效应的分子印迹纳米反应器,用于特异性检测单糖。

A molecularly imprinted nanoreactor with spatially confined effect fabricated with nano-caged cascaded enzymatic system for specific detection of monosaccharides.

机构信息

Institute of Biomedical Engineering; College of Life Sciences, Qingdao University, Qingdao, 266071, China.

College of Materials Science and Engineering; Institute for Graphene Applied Technology Innovation, College of Life Sciences, Qingdao University, 266071, China.

出版信息

Biosens Bioelectron. 2021 Sep 15;188:113355. doi: 10.1016/j.bios.2021.113355. Epub 2021 May 20.

Abstract

Glucose oxidase (GOx), traditionally regarded as an oxidoreductase with high β-D-glucose specificity, has been widely applied as sensing probe for β-D-glucose detection. However, it is found that the specificity of GOx is not absolute and GOx cannot decern β-D-glucose among its isomers such as xylose, mannose and galactose. The existence of the other monosaccharides in sensing system could compromise the sensitivity for β-D-glucose, therefore, it is of great urgency to achieve the highly specific catalytic performance of GOx. Herein, porous metal-organic frameworks (MOF) are prepared as the host matrix for immobilization of both GOx and bovine hemoglobin (BHb), obtained a cascaded catalytic system (MOF@GOx@BHb) with both enhanced GOx activity and peroxidase-like activity owing to the spatially confined effect. Then, using β-D-glucose as both template molecules and substances, hydroxyl radicals are produced continuously and applied for initiating the polymerization of molecular imprinting polymers (MIPs) on the surface of MOF@GOx@BHb. Impressively, the obtaining molecularly imprinted GOx (noted as MOF@GOx@BHb-MIPs) achieves the highly sensitive and specific detection of β-D-glucose in the concentration range of 0.5-20 μM with the LOD = 0.4 μM (S/N = 3) by colorimetry. Similarly, MOF@GOx@BHb-MIPs are subsequently obtained using mannose, xylose and galactose as template molecules, respectively, and also show satisfied specific catalytic activity towards corresponding templates, indicating the effectiveness of the proposed strategy to achieve highly specific catalytic performance of GOx.

摘要

葡萄糖氧化酶(GOx)传统上被认为是一种具有高β-D-葡萄糖特异性的氧化还原酶,已被广泛应用于β-D-葡萄糖检测的传感探针。然而,人们发现 GOx 的特异性并非绝对的,GOx 无法区分木糖、甘露糖和半乳糖等其异构体中的β-D-葡萄糖。在传感系统中存在其他单糖会影响对β-D-葡萄糖的灵敏度,因此,实现 GOx 的高特异性催化性能迫在眉睫。在此,制备多孔金属有机骨架(MOF)作为固定化 GOx 和牛血红蛋白(BHb)的宿主基质,获得了具有增强的 GOx 活性和过氧化物酶样活性的级联催化体系(MOF@GOx@BHb),这归因于空间受限效应。然后,以β-D-葡萄糖为模板分子和反应物,连续产生羟基自由基,并用于在 MOF@GOx@BHb 表面引发分子印迹聚合物(MIPs)的聚合。令人印象深刻的是,获得的分子印迹 GOx(记为 MOF@GOx@BHb-MIPs)通过比色法在 0.5-20 μM 的浓度范围内实现了对β-D-葡萄糖的高灵敏度和特异性检测,LOD=0.4 μM(S/N=3)。类似地,使用甘露糖、木糖和半乳糖分别作为模板分子,也可以得到 MOF@GOx@BHb-MIPs,并且对相应的模板表现出令人满意的特异性催化活性,表明了所提出的策略实现 GOx 高特异性催化性能的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验