Chen Yubi, Kongruengkit Terawit, Salinas Andrea Capa, Yang Runqing, Quan Yujie, Zhang Fanghao, Pokharel Ganesh, Kautzsch Linus, Wilson Stephen D, Mu Sai, Harter John W, Liao Bolin
Department of Physics, University of California, Santa Barbara, CA 93106-9530.
Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106-5070.
Proc Natl Acad Sci U S A. 2025 Aug 5;122(31):e2507135122. doi: 10.1073/pnas.2507135122. Epub 2025 Aug 1.
Kagome metals have emerged as a frontier in condensed matter physics due to their potential to host exotic quantum states. Among these, CsVSb has attracted significant attention for the unusual coexistence of charge density wave (CDW) order and unconventional superconductivity, presenting an ideal system for exploring the emergent phenomena from the interplay of phonons, electronic fluctuations, and topological effects. The nature of CDW formation in CsVSb is unconventional and has sparked considerable debate. In this study, we examine the origin of the CDW state via ab initio finite-temperature simulations of the lattice dynamics. Through a comparative study of CsVSb and 2H-NbSe, we demonstrate that the experimental absence of phonon softening-a hallmark of conventional CDW transition-in CsVSb along with the presence of a weakly first-order transition, can be attributed to quantum zero-point atomic motion. This zero-point motion smears the free energy landscape of CDW, effectively stabilizing the pristine structure even below the CDW transition temperature. We argue that this surprising behavior could cause coexistence of pristine and CDW structures across the transition and lead to a weak first-order transition. Our predicted lattice dynamical behavior is supported by coherent phonon spectroscopy in single-crystalline CsVSb. Our results provide crucial insights into the formation mechanism of CDW materials that exhibit little to no phonon softening, including cuprates, and highlight the surprising role of quantum effects in emergent properties of relatively heavy-element materials like CsVSb.
由于具备承载奇异量子态的潜力, Kagome金属已成为凝聚态物理的一个前沿领域。其中,CsVSb因电荷密度波(CDW)序与非常规超导性的异常共存而备受关注,为探索声子、电子涨落和拓扑效应相互作用所产生的新兴现象提供了一个理想体系。CsVSb中CDW形成的本质是非传统的,引发了大量争论。在本研究中,我们通过晶格动力学的从头算有限温度模拟来研究CDW态的起源。通过对CsVSb和2H-NbSe的比较研究,我们证明,在CsVSb中实验上不存在声子软化(传统CDW转变的一个标志)以及存在弱一级转变,可归因于量子零点原子运动。这种零点运动抹平了CDW的自由能景观,即使在低于CDW转变温度时也有效地稳定了原始结构。我们认为,这种令人惊讶的行为可能导致原始结构和CDW结构在整个转变过程中共存,并导致弱一级转变。我们预测的晶格动力学行为得到了单晶CsVSb中相干声子光谱的支持。我们的结果为几乎没有或不存在声子软化的CDW材料(包括铜酸盐)的形成机制提供了关键见解,并突出了量子效应在CsVSb等相对重元素材料的新兴特性中的惊人作用。